
© Copyright 1994, 1996 National Instruments Corporation.
All rights reserved.

LabWindows®/CVI
Programmer Reference Manual

July 1996 Edition

Part Number 320685C-01

Internet Support

GPIB: gpib.support@natinst.com
DAQ: daq.support@natinst.com
VXI: vxi.support@natinst.com
LabVIEW: lv.support@natinst.com
LabWindows: lw.support@natinst.com
HiQ: hiq.support@natinst.com
Lookout: lookout.support@natinst.com
VISA: visa.support@natinst.com
FTP Site: ftp.natinst.com
Web Address: www.natinst.com

Bulletin Board Support

BBS United States: (512) 794-5422 or (800) 327-3077
BBS United Kingdom: 01635 551422
BBS France: 1 48 65 15 59

FaxBack Support

(512) 418-1111

Telephone Support (U.S.)

Tel: (512) 795-8248
Fax: (512) 794-5678

International Offices

Australia 03 9 879 9422, Austria 0662 45 79 90 0, Belgium 02 757 00 20,
Canada (Ontario) 519 622 9310, Canada (Québec) 514 694 8521, Denmark 45 76 26 00,
Finland 90 527 2321, France 1 48 14 24 24, Germany 089 741 31 30, Hong Kong 2645 3186,
Italy 02 413091, Japan 03 5472 2970, Korea 02 596 7456, Mexico 95 800 010 0793,
Netherlands 0348 433466, Norway 32 84 84 00, Singapore 2265886, Spain 91 640 0085,
Sweden 08 730 49 70, Switzerland 056 200 51 51, Taiwan 02 377 1200, U.K. 01635 523545

National Instruments Corporate HeadquartersNational Instruments Corporate Headquarters

6504 Bridge Point Parkway Austin, TX 78730-5039 Tel: (512) 794-0100

Warranty

The media on which you receive National Instruments software are warranted not to fail to execute programming
instructions, due to defects in materials and workmanship, for a period of 90 days from date of shipment, as
evidenced by receipts or other documentation. National Instruments will, at its option, repair or replace software
media that do not execute programming instructions if National Instruments receives notice of such defects during
the warranty period. National Instruments does not warrant that the operation of the software shall be uninterrupted
or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the
outside of the package before any equipment will be accepted for warranty work. National Instruments will pay the
shipping costs of returning to the owner parts which are covered by warranty.

National Instruments believes that the information in this manual is accurate. The document has been carefully
reviewed for technical accuracy. In the event that technical or typographical errors exist, National Instruments
reserves the right to make changes to subsequent editions of this document without prior notice to holders of this
edition. The reader should consult National Instruments if errors are suspected. In no event shall National
Instruments be liable for any damages arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND

SPECIFICALLY DISCLAIMS ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
CUSTOMER’S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR NEGLIGENCE ON THE PART OF NATIONAL

INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMER. NATIONAL INSTRUMENTS

WILL NOT BE LIABLE FOR DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR

CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEREOF. This limitation of the liability of
National Instruments will apply regardless of the form of action, whether in contract or tort, including negligence.
Any action against National Instruments must be brought within one year after the cause of action accrues. National
Instruments shall not be liable for any delay in performance due to causes beyond its reasonable control. The
warranty provided herein does not cover damages, defects, malfunctions, or service failures caused by owner’s
failure to follow the National Instruments installation, operation, or maintenance instructions; owner’s modification
of the product; owner’s abuse, misuse, or negligent acts; and power failure or surges, fire, flood, accident, actions of
third parties, or other events outside reasonable control.

Copyright

Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or
mechanical, including photocopying, recording, storing in an information retrieval system, or translating, in whole
or in part, without the prior written consent of National Instruments Corporation.

Trademarks

Product and company names listed are trademarks or trade names of their respective companies.

WARNING REGARDING MEDICAL AND CLINICAL USE
OF NATIONAL INSTRUMENTS PRODUCTS

National Instruments products are not designed with components and testing intended to ensure a level of reliability
suitable for use in treatment and diagnosis of humans. Applications of National Instruments products involving
medical or clinical treatment can create a potential for accidental injury caused by product failure, or by errors on
the part of the user or application designer. Any use or application of National Instruments products for or
involving medical or clinical treatment must be performed by properly trained and qualified medical personnel, and
all traditional medical safeguards, equipment, and procedures that are appropriate in the particular situation to
prevent serious injury or death should always continue to be used when National Instruments products are being
used. National Instruments products are NOT intended to be a substitute for any form of established process,
procedure, or equipment used to monitor or safeguard human health and safety in medical or clinical treatment.

© National Instruments Corporation v LabWindows/CVI Programmer Reference

Contents

About This Manual...ix
Organization of This Manual ...ix
Conventions Used in This Manual ...x
Related Documentation ..xi
Customer Communication ...xi

Chapter 1
LabWindows/CVI Compiler ...1-1

Overview ..1-1
LabWindows/CVI Compiler Specifics...1-1

Compiler Limits ...1-1
Compiler Options ...1-2
Compiler Defines ...1-4

C Language Extensions..1-5
Keywords That Are Not ANSI C Standard..1-5
Calling Conventions (Windows 95 and NT Only)...1-6

Import and Export Qualifiers ...1-6
C++-Style Comment Markers ..1-7
Duplicate Typedefs ..1-7
Structure Packing Pragma (Windows 3.1 and Windows 95/NT only).............1-7
Program Entry Points (Windows 95 and NT only) ..1-8

C Library Issues ...1-8
Using the Low-Level I/O Functions...1-8

C Data Types and 32-bit Compiler Issues..1-9
Data Types..1-9
Converting 16-bit Source Code to 32-bit Source Code....................................1-9

Debugging Levels ..1-10
User Protection...1-11

Array Indexing and Pointer Protection Errors..1-11
Pointer Arithmetic (Non-Fatal) ..1-12
Pointer Assignment (Non-Fatal) ..1-12
Pointer Dereference Errors (Fatal) ...1-13
Pointer Comparison (Non-Fatal)..1-13
Pointer Subtraction (Non-Fatal) ...1-14
Pointer Casting (Non-Fatal) ...1-14

Dynamic Memory Protection Errors ..1-14
Memory Deallocation (Non-Fatal)...1-14
Memory Corruption (Fatal)..1-15

General Protection Errors...1-15
Library Protection Errors ...1-15
Disabling User Protection ..1-16

Disabling Protection Errors at Run-time..1-16

Contents

LabWindows/CVI Programmer Reference vi © National Instruments Corporation

Disabling Library Errors at Run-time ..1-16
Disabling Protection for Individual Pointer ...1-16
Disabling Library Protection Errors for Functions1-17

Details of User Protection ..1-18
Pointer Casting ...1-18
Dynamic memory...1-19
Library Functions ...1-19
Unions ..1-19

Stack Size ...1-20
Include Paths ..1-20

Include Path Search Precedence...1-20

Chapter 2
Using Loadable Compiled Modules...2-1

About Loadable Compiled Modules ..2-1
Advantages and Disadvantages of Using Loadable Compiled Modules in
LabWindows/CVI ..2-1
Using a Loadable Compiled Module as an Instrument Driver Program File...2-2
Using a Loadable Compiled Module as a User Library...................................2-2
Using a Loadable Compiled Module in the Project List..................................2-3
Using a Loadable Compiled Module as an External Module2-3
Special Considerations When Using a Loadable Compiled Module2-4
Compiled Modules Using Asynchronous Callbacks..2-5

Chapter 3
Windows 95 and NT Compiler/Linker Issues..3-1

Loading 32-bit DLLs under Windows 95 and NT ...3-1
DLLs for Instrument Drivers and User Libraries...3-2
Using The LoadExternalModule Function...3-2
Link Errors when Using DLL Import Libraries ...3-2
DLL Path (.pth) Files Not Supported...3-2
16-Bit DLLs Not Supported...3-2
Generating an Import Library...3-3
Default Unloading/Reloading Policy ...3-3

Compatibility with External Compilers ...3-3
Choosing Your Compatible Compiler ...3-4
Object Files, Library Files, and DLL Import Libraries....................................3-4
DLLs...3-4

Structure Packing ...3-4
Bit Fields ..3-5
Returning Floats and Doubles..3-5
Returning Structures...3-5
Enum Sizes...3-5
Long Doubles ...3-6

Differences with the External Compilers ...3-6
External Compiler Versions Supported..3-6

Contents

© National Instruments Corporation vii LabWindows/CVI Programmer Reference

Required Preprocessor Definitions...3-6
Multithreading and the LabWindows/CVI Libraries ...3-7

Multithread-Safe Libraries ...3-7
Libraries that are Not Multithread Safe..3-7

Using LabWindows/CVI Libraries in External Compilers ..3-8
Include Files for the ANSI C Library and the LabWindows/CVI Libraries3-9
Standard Input/Output Window ...3-9
Resolving Callback References From .UIR Files ..3-9

Linking to Callback Functions Not Exported From a DLL3-10
Resolving References from Modules Loaded at Run-Time.............................3-11

Resolving References to Non-LabWindows/CVI Symbols3-11
Resolving Run-Time Module References to Symbols Not Exported
From a DLL..3-12

Run State Change Callbacks Are Not Available in External Compilers3-12
Calling InitCVIRTE and CloseCVIRTE..3-13

Creating Object and Library Files in External Compilers for Use
in LabWindows/CVI ..3-14

Microsoft Visual C/C++...3-14
Borland C/C++ command line compiler ..3-14
WATCOM C/C++..3-15
Symantec C/C++ ..3-15

Creating Executables in LabWindows/CVI ...3-16
Creating DLLs in LabWindows/CVI ...3-16

Customizing an Import Library..3-16
Preparing Source Code for Use in a DLL ..3-17

Calling Convention for Exported Functions ..3-17
Exporting DLL Functions and Variables ...3-18

Include File Method ...3-18
Export Qualifier Method ..3-18

Marking Imported Symbols in Include File Distributed with DLL3-19
Recommendations ..3-20

Automatic Inclusion of Type Library Resource for Visual Basic....................3-20
Creating Static Libraries in LabWindows/CVI..3-21
Creating Object Files in LabWindows/CVI ...3-21
Calling Windows SDK Functions in LabWindows/CVI ...3-22

Windows SDK Include Files..3-22
Using Windows SDK Functions for User Interface Capabilities.....................3-22
Using Windows SDK Functions to Create Multiple Threads3-23
Automatic Loading of SDK Import Libraries ..3-23

Setting Up Include Paths for LabWindows/CVI, ANSI C, and SDK Libraries...........3-23
Compiling in LabWindows/CVI for Linking in LabWindows/CVI3-24
Compiling in LabWindows/CVI for Linking in an External Compiler3-24
Compiling in an External Compiler for Linking in an External Compiler3-24
Compiling in an External Compiler for Linking in LabWindows/CVI3-24

Handling Hardware Interrupts under Windows 95 and NT ...3-24

Contents

LabWindows/CVI Programmer Reference viii © National Instruments Corporation

Chapter 4
Windows 3.1 Compiler/Linker Issues..4-1

Using Modules Compiled by LabWindows/CVI ...4-1
Using 32-Bit Watcom Compiled Modules Under Windows 3.14-1
Using 32-Bit Borland or Symantec Compiled Modules Under Windows 3.14-2
16-Bit Windows DLLs...4-4

Helpful LabWindows/CVI Options for Working with DLLs4-4
DLL Rules and Restrictions ...4-5
DLL Glue Code..4-7

DLLs That Can Use Glue Code Generated at Load Time4-8
DLLs That Cannot Use Glue Code Generated at Load Time4-8

Loading a DLL That Cannot Use Glue Code Generated at
Load Time ..4-8
Rules for the DLL Include File Used to Generate Glue Code .4-9
If the DLL Requires a Support Module Outside of the DLL ...4-9
If the DLL is Passed Arrays Bigger Than 64 K4-10
If the DLL Retains a Buffer After the Function Returns (an
Asynchronous Function) ..4-11
If the DLL Calls Directly Back Into 32-Bit Code....................4-12
If the DLL returns pointers...4-14
If a DLL Is Passed a Pointer That Points to Other Pointers.....4-16
DLL Exports Functions by Ordinal Value Only4-18
Generated Glue Code: ..4-19

Recognizing Windows Messages Passed from a DLL.....................................4-19
RegisterWinMsgCallback ..4-19
UnRegisterWinMsgCallback ...4-20
GetCVIWindowHandle..4-20

Creating 16-bit DLLs with Microsoft Visual C++ 1.5.....................................4-21
Creating 16-bit DLLs with Borland C++ ...4-21
DLL Search Precedence ...4-22

Chapter 5
UNIX Compiler/Linker Issues ...5-1

Calling Sun C Library Functions ...5-1
Restrictions on Calling Sun C Library Functions ..5-1

Creating Executables..5-1
Run State Change Callbacks Are Not Available in Executables5-2
Main Function Must Call InitCVIRTE ..5-2

Using Externally Compiled Modules...5-3
Restrictions on Externally Compiled Modules ..5-3
Compiling Modules With External Compilers ..5-3

Locking Process Segments into Memory Using plock()..5-4

Contents

© National Instruments Corporation ix LabWindows/CVI Programmer Reference

Chapter 6
Building Multiplatform Applications ..6-1

Multiplatform Programming Guidelines..6-1
Library Issues ...6-1
Externally Compiled Module Issues ..6-3

Multiplatform User Interface Guidelines ...6-3

Chapter 7
Creating and Distributing Standalone Executables and DLLs........................7-1

Introduction to the Run-Time Engine ..7-1
Distributing Standalone Executables under Windows7-1

Minimum System Requirements for Windows 95 and NT..................7-1
No Math Coprocessor Required for Windows 95 and NT...................7-2
Minimum System Requirements for Windows 3.1..............................7-2
Math Coprocessor Software Emulation for Windows 3.17-2

Distributing Standalone Executables under UNIX ..7-2
Distributing Standalone Executables under Solaris 27-3
Distributing Standalone Executables under Solaris 17-4
Minimum System Requirements for UNIX ...7-5

Configuring the Run-Time Engine...7-5
Translating the Message File..7-5
Option Descriptions..7-6

cvirtx (Windows 3.1 Only)...7-6
cvidir...7-6

Necessary Files for Running Executable Programs ...7-7
Necessary Files for Using DLLs Created in Windows 95/NT.....................................7-8
Location of Files on the Target Machine for Running Executables and DLLs7-8

LabWindows/CVI Run-Time Engine on Windows 95/NT..............................7-9
LabWindows/CVI Run-Time Engine on Windows 3.17-9
Rules for Accessing UIR, Image, and Panel State Files on All Platforms.......7-9
Rules for Using DLL Files under Windows 95 and NT7-10
Rules for Using DLL Files in Windows 3.1...7-10
Rules for Loading Files Using LoadExternalModule7-11

Forcing Modules Referenced by External Modules into Your
Executable or DLL ...7-12
Using LoadExternalModule on Files in the Project7-12
Using LoadExternalModule on Library and Object Files Not in
the Project...7-13
Using LoadExternalModule on DLL Files under Windows 95
and NT..7-14
Using LoadExternalModule on DLL and Path Files
under Windows 3.1 ..7-14
Using LoadExternalModule on Source Files (.c).................................7-15

Rules for Accessing Other Files...7-16
Error Checking in your Standalone Executable or DLL ..7-16

Contents

LabWindows/CVI Programmer Reference x © National Instruments Corporation

Chapter 8
Distributing Libraries and Function Panels ...8-1

How to Distribute Libraries..8-1
Adding Libraries to User’s Library Menu..8-1
Specifying Library Dependencies ..8-2

Appendix A
Errors and Warnings...A-1

Appendix B
Error Checking in LabWindows/CVI ...B-1

Error Checking ...B-2
Status Reporting by LabWindows/CVI Libraries and Instrument DriversB-3

User Interface Library ..B-3
Analysis/Advanced Analysis Libraries ..B-3
Data Acquisition Library..B-3
VXI Library..B-4
GPIB/GPIB 488.2 Library..B-4
RS-232 Library...B-4
TCP Library..B-5
DDE Library...B-5
X Property Library ...B-5
Formatting and I/O Library ..B-5
Utility Library ..B-6
ANSI C Library..B-6
LabWindows/CVI Instrument Drivers ...B-6

Appendix C
Customer Communiation...C-1

Glossary..G-1

Index .. I-1

Figures

Figure 7-1. Files Needed to Run a LabWindows/CVI Executable Program on a
Target Machine... 7-7

Tables

Table 1-1. LabWindows/CVI Compiler Limits .. 1-1
Table 1-2. LabWindows/CVI Allowable Data Types... 1-9
Table 1-3. Stack Size Ranges for LabWindows/CVI.. 1-20

Table A-1. Error Messages.. A-1

© National Instruments Corporation xi LabWindows/CVI Programmer Reference

About This Manual

The LabWindows/CVI Programmer Reference Manual contains information to help you develop
programs in LabWindows/CVI. The LabWindows/CVI Programmer Reference Manual is
intended for use by LabWindows users who have already completed the Getting Started with
LabWindows/CVI tutorial. To use this manual effectively, you should be familiar with Getting
Started with LabWindows/CVI, the LabWindows/CVI User Manual, DOS, and Windows
fundamentals.

Organization of This Manual

The LabWindows/CVI Programmer Reference Manual is organized as follows:

• Chapter 1, LabWindows/CVI Compiler, describes LabWindows/CVI compiler specifics,
32-bit compiler issues, debugging levels, and user protection.

• Chapter 2, Using Loadable Compiled Modules, describes the advantages and disadvantages
of using compiled code modules in your application. It also describes the different kinds of
compiled modules available under LabWindows/CVI and includes programming guidelines
for modules generated by external compilers.

• Chapter 3, Building Multiplatform Applications, contains guidelines and caveats for writing
platform-independent LabWindows/CVI applications. LabWindows/CVI currently runs
under Windows for the PC and Solaris for the SPARCstation.

• Chapter 4, Creating and Distributing Standalone Executables, describes how the Run-Time
Engine, DLLs, external compiled modules, and other files interact with your executable file.
This chapter also describes the technique of error checking in a standalone executable
program. You can create executable programs from any project that runs in the
LabWindows/CVI environment.

• Chapter 5, Distributing Libraries, describes how to distribute libraries, how to add libraries
to the Library menu, and how to specify library dependencies.

• Appendix A, Errors and Warnings, contains an alphabetized list of compiler warnings,
compiler errors, link errors, DLL loading errors, and external module loading errors
generated by LabWindows/CVI.

• Appendix B, Error Checking in LabWindows/CVI, describes error checking codes in the
LabWindows/CVI environment and how errors are reported in LabWindows/CVI libraries
and instruments.

About This Manual

LabWindows/CVI Programmer Reference xii © National Instruments Corporation

• Appendix C, Customer Communication, contains forms to help you gather the information
necessary to help us solve technical problems you might have as well as a form you can use
to comment on the product documentation.

• The Glossary contains an alphabetical list of terms used in this manual and a description of
each.

• The Index contains an alphabetical list of key terms and topics used in this manual, including
the page where each one can be found.

Conventions Used in This Manual

The following conventions are used in this manual.

bold Bold text denotes a parameter, menu item, return value, function panel
item, or dialog box button or option.

italic Italic text denotes emphasis, a cross reference, or an introduction to a
key concept.

bold italic Bold italic text denotes a note, caution, or warning.

monospace Text in this font denotes text or characters that you should literally enter
from the keyboard. Sections of code, programming examples, and
syntax examples also appear in this font. This font also is used for the
proper names of disk drives, paths, directories, programs, subprograms,
subroutines, device names, variables, filenames, and extensions, and for
statements and comments taken from program code.

italic monospace Italic text in this font denotes that you must supply the appropriate
words or values in the place of these items.

< > Angle brackets enclose the name of a key. A hyphen between two or
more key names enclosed in angle brackets denotes that you should
simultaneously press the named keys-for example, <Ctrl-Alt-Delete>.

» The » symbol leads you through nested menu items and dialog box
options to a final action. The sequence File » Page Setup »
Options » Substitute Fonts directs you to pull down the File
menu, select the Page Setup item, select Options, and finally
select the Substitute Fonts option from the last dialog box.

paths Paths in this manual are denoted using backslashes (\) to separate
drive names, directories, and files, as in the following path.
drivename\dir1name\dir2name\myfile

Acronyms, abbreviations, metric prefixes, mnemonics, and symbols, and terms are listed in the
Glossary.

About This Manual

© National Instruments Corporation xiii LabWindows/CVI Programmer Reference

Related Documentation

You may find the following documentation helpful while programming in LabWindows/CVI.

• Microsoft Windows 3.1 Programmer's Reference Manual, volumes 1 and 2, Microsoft
Corporation, Redmond WA, 1987–1992.

• WATCOM C/386 User's Guide, WATCOM Publications Limited, Waterloo, Ontario,
Canada, 1992.

• Harbison, Samuel P. and Guy L. Steele, Jr., C: A Reference Manual, Englewood Cliffs, NJ:
Prentice-Hall, Inc., 1995.

Customer Communication

National Instruments wants to receive your comments on our products and manuals. We are
interested in the applications you develop with our products, and we want to help you if you have
problems with them. To make it easy for you to contact us, this manual contains comment and
technical support forms for you to complete. These forms are in Appendix C, Customer
Communication, at the end of this manual.

© National Instruments Corporation 1-1 LabWindows/CVI Programmer Reference

Chapter 1
LabWindows/CVI Compiler

This chapter describes LabWindows/CVI compiler specifics, C language extensions, 32-bit
compiler issues, debugging levels, and user protection.

Overview

The LabWindows/CVI compiler is a 32-bit ANSI C compiler. The kernel of the
LabWindows/CVI compiler is the lcc ANSI C compiler (© Copyright 1990, 1991, 1992, 1993
David R. Hanson). It is not an optimizing compiler, but focuses instead on debugging, user
protection, and platform independence. Because the compiler is an integral part of the
LabWindows/CVI environment and features a limited set of straightforward options, it is also
easy to use.

LabWindows/CVI Compiler Specifics

This section describes specific LabWindows/CVI compiler limits, options, defines, and
diversions from the ANSI C standard.

Compiler Limits

The compiler limits for LabWindows/CVI are shown in Table 1-1.

Table 1-1. LabWindows/CVI Compiler Limits

Maximum nesting of #include 32

Maximum nesting of #if , #ifdef 16

Maximum number of macro parameters 32

Maximum number of function parameters 64

Maximum nesting of compound blocks 32

Maximum size of array/struct types 2
31

LabWindows/CVI Compiler Chapter 1

LabWindows/CVI Programmer Reference 1-2 National Instruments Corporation

Compiler Options

You can set the LabWindows/CVI compiler options with the Compiler Preferences command
in the Options menu of a Project window. This command invokes a dialog box which allows
you to set the following LabWindows/CVI compiler options.

• Compatibility with (Windows 95/NT only) displays the current compiler compatibility
mode. (For more information on external compiler compatibility, see the Compatibility with
External Compilers section in Chapter 3, Windows 95 and NT Compiler/Linker Issues.)

• Default calling convention (Windows 95/NT only) sets the compiler’s default calling
convention, unless the compatible compiler is WATCOM. For the other compilers, the
default calling convention is normally cdecl but can be changed to stdcall . For
WATCOM, it is always the stack-based calling convention. Do not change the default calling
convention to stdcall if you plan to generate static library or object files for all four
compatible external compilers. (For more information, see the Calling Conventions
(Windows 95/NT Only) section in Chapter 3, Windows 95 and NT Compiler/Linker Issues.)

• Maximum number of compile errors sets an upper limit on the number of compiler errors
to be listed in the Build Errors window.

• Require function prototypes requires all function references to be preceded by a full
prototype declaration. A full prototype is one that includes the function return type as well as
the types of each parameter. If a function has no parameters, a full prototype must have the
void keyword to indicate this case. A new style function definition (one in which
parameters are declared directly in the parameter list) serves as a prototype.

Missing prototype errors can occur at the following places:

– Typedefs such as typedef void FUNTYPE()

– Function pointer declarations such as void (*fp)() whether used as a global, local,
parameter, array element or structure member

– Old style function definitions (one in which parameters are declared outside of the
parameter list) that are not preceded by a full prototype

– Function call expressions such as (*fp)() , where fp does not have a full prototype

Caution: Be sure you enable the Require Function Prototypes option. If disabled,
some of the run-time error checking will also be disabled.

• Require return values for non-void functions generates compile warnings for non-void
functions (except main) that do not end with a return statement returning a value.
LabWindows/CVI reports a run-time error when a non-void function executes without
returning a value.

Chapter 1 LabWindows/CVI Compiler

© National Instruments Corporation 1-3 LabWindows/CVI Programmer Reference

For example, the following code produces a compile-time warning and will produce a run-
time error when flag is FALSE.

int fun (void)
{

if (flag) {
return 0;

}
}

• Enable signed/unsigned pointer mismatch warning generates a compiler warning for
pointer assignments in which the left side and right side are not both signed or unsigned
expressions. According to the ANSI C standard, these assignments should be errors because
they involve incompatible types. In practice, however, assigning a pointer to unsigned
type, the value of a pointer to signed type, or vice versa, causes no problems.

The LabWindows/CVI compiler checks assignment statements and function call arguments
to ensure that the lvalue and rvalue expressions have compatible types. If you select Enable
signed/unsigned pointer mismatch warning, LabWindows/CVI generates compile
warnings when the lvalue and rvalue expressions are both pointers to integers but when one
points to a signed integer and the other points to an unsigned integer. For example, the
LabWindows/CVI compiler would generate a signed type mismatch between
pointer to char and pointer to unsigned char warning on the call to
MyFunction in the following code example.

void MyFunction (unsigned char *x);
char *y = "my string";
main () {

 MyFunction (y);
}

• Enable unreachable code warning generates a compiler warning for statements that cannot
be reached on execution. When you select Enable unreachable code warning, the
LabWindows/CVI compiler generates a warning at each line of code that cannot be reached
during execution of your program. For example, a warning would be reported on the break
statement in the following code.

switch (intval) {
case 4:

return 0;
break;

}

• Track include file dependencies keeps the project up to date by tracking the dependencies
between source files and include files. Whenever a file is modified, LabWindows/CVI marks
for compilation all project source files that include the modified file.

• Prompt for include file paths sets LabWindows/CVI to prompt you to make a manual
search for any header files listed in the #include lines that the compiler cannot find.

LabWindows/CVI Compiler Chapter 1

LabWindows/CVI Programmer Reference 1-4 National Instruments Corporation

When you find them, you can automatically insert the appropriate path into the Include Paths
list for the project.

• Stop on first file with errors sets the LabWindows/CVI compiler to terminate compilation
after one file is found to have errors. With this option, you can correct build errors in your
project one file at a time.

• Show Build Error Window for Warnings sets the LabWindows/CVI compiler to bring up
the Build Error window when warnings occur, even if there are no errors. If it is deactivated,
warnings can occur without being brought to your attention.

• Display status dialog during build displays a status box during the build, showing the name
of the file being compiled, the number of errors and warnings encountered, and a percent
completed value. Your project compiles faster when you disable this feature.

Compiler Defines

The LabWindows/CVI compiler accepts compiler defines through the Compiler Defines
command in the Build menu of the Project window.

Compiler defines have the syntax

/Dx or /Dx=y

where x is a valid C identifier. x can be used by the #if and #ifdef preprocessor directives
for conditional compilation or as a predefined macro in your source code. If y contains
embedded blanks, it must be surrounded by double quotation marks.

LabWindows/CVI predefines these macros to help you write platform-dependent code.

• _CVI_ is defined to be 1 in version 3.0, 301 in version 3.0.1, and 310 in version 3.1.

• _NI _mswin _ is defined if you compile under Windows 3.x, Windows 95, or Windows NT.

• _NI _mswin16 _ is defined if you compile under Windows 3.x.

• _NI _mswin32 _ is defined if you compile under Windows 95 and Windows NT.

• _NI _i386 _ is defined if you compile on a PC.

• _NI _unix _ is defined if you compile with UNIX.

• _NI _sparc _ is defined if you compile on a SPARCstation. The value of _NI _sparc _ is 1
if you are running under Solaris 1.x and 2 if you are running under Solaris 2.x.

• _CVI_DEBUG_ is defined as 1 only if the debugging level is other than "none."

The following predefined macros are defined for Windows 95 and NT.

• _CVI_EXE_ is defined if the project target type is Standalone Executable

Chapter 1 LabWindows/CVI Compiler

© National Instruments Corporation 1-5 LabWindows/CVI Programmer Reference

• _CVI_DLL_ is defined if target type is Dynamic Link Library

• _CVI_LIB_ is defined if target type is Static Library

• __DEFALIGN is defined to the default structure alignment (8 for Microsoft and Symantec,
1 for Borland and WATCOM)

• _NI_VC_ is defined to 220 for the Microsoft Visual C/C++ compatibility mode

• _NI_SC_ is defined to 720 for the Symantec C/C++ compatibility mode

• _NI_BC_ is defined to 451 for the Borland C/C++ mode

• _NI_WC_ is defined to 1050 for the WATCOM C/C++ mode

• _WINDOWS is defined

• WIN32 is defined

• _WIN32 is defined

• __WIN32__ is defined

• __NT__ defined

• _M_IX86 is defined to 400

• _NI_mswin32_ is defined

• __FLAT__ is defined to 1

C Language Extensions

LabWindows/CVI compiler has several extensions to, or relaxations of, the C language. The
purpose is to make the LabWindows/CVI compiler compatible with the commonly used C
extensions in external compilers on Windows 95 and NT.

Keywords That Are Not ANSI C Standard

LabWindows/CVI for Windows 3.1 accepts the non-ANSI C keywords pascal , PASCAL, and
_pascal , but ignores them.

LabWindows/CVI for UNIX does not allow you to pass a struct as one of a series of
unspecified variable arguments. Because of this, va_arg (ap, type) is not legal in
LabWindows/CVI if type is a struct type.

LabWindows/CVI accepts the #line preprocessor directive, but ignores it.

LabWindows/CVI Compiler Chapter 1

LabWindows/CVI Programmer Reference 1-6 National Instruments Corporation

Calling Conventions (Windows 95 and NT Only)

You may use the following calling convention qualifiers in function declarations:

cdecl
_cdecl

__cdecl (recommended)
_stdcall

__stdcall (recommended)

In Microsoft Visual C/C++, Borland C/C++, and Symantec C/C++, if you do not use a calling
convention qualifier, the calling convention normally defaults to cdecl . You can, however, set
options to cause the calling convention to default to stdcall . The behavior is the same in
LabWindows/CVI. You can set the default calling convention to either cdecl or stdcall
using the Compiler Options command in the Options menu of the Project window. When you
create a new project, the default calling convention is cdecl .

In WATCOM C/C++, the default calling convention is not cdecl or stdcall . You must use
the -4s (80486 Stack-Based Calling) option when you compile a module in WATCOM for
use in LabWindows/CVI. (See the Creating Object and Library Files in External Compilers
for Use in LabWindows/CVI section in Chapter 3, Windows 95 and NT Compiler/Linker
Issues.) The -4s option causes the stack-based calling convention to be the default. In
LabWindows/CVI in WATCOM compatibility mode, the default calling convention is always
the stack-based convention. It cannot be changed. LabWindows/CVI does compile with the
cdecl and stdcall conventions under WATCOM, except that floating point and structure
return values do not work in the cdecl calling convention. It is recommended that you avoid
using cdecl with WATCOM.

In the cdecl calling convention (and the WATCOM stack-based calling convention), the
calling function is responsible for cleaning up the stack, and functions can have variable number
of arguments.

In the stdcall calling convention, the called function is responsible for cleaning up the stack.
Functions with a variable number of arguments do not work in stdcall . If you use the
stdcall qualifier on a function with a variable number of arguments, the qualifier is not
honored. All compilers pass parameters and return values in the same way for stdcall
functions, except for floating point and structure return values.

The stdcall calling convention is recommended for all functions exported from a DLL.
Visual Basic and other non-C Windows programs expect DLL functions to be stdcall .

Import and Export Qualifiers

You may use the following qualifiers in variable and function declarations.

__declspec(dllimport)
__declspec(dllexport)

Chapter 1 LabWindows/CVI Compiler

© National Instruments Corporation 1-7 LabWindows/CVI Programmer Reference

__import
__export
_import
_export

At this time, not all of these qualifiers work in all external compilers. The LabWindows/CVI
cvidef.h include file defines the following two macros, which are designed to work in each
external compiler.

DLLIMPORT
DLLEXPORT

An import qualifier informs the compiler that the symbol is not defined in the project but rather
in a DLL that is linked into the project. Import qualifiers are required on declarations of variables
imported from a DLL, but are not required on function declarations.

An export qualifier is relevant only in a project for which the target type is Dynamic Link
Library. The qualifier can be on the declaration or definition of the symbol, or both. The symbol
must be defined in the project. The qualifier instructs the linker to include the symbol in the DLL
import library.

C++-Style Comment Markers

You can use double slashes (//) to begin a comment. The comment continues until the end of the
line.

Duplicate Typedefs

The LabWindows/CVI compiler does not report an error on multiple definitions of the same
typedef identifier, as long as the definitions are identical.

Structure Packing Pragma (Windows 3.1 and Windows 95/NT only)

The pack pragma can be used within LabWindows/CVI to specify the maximum alignment
factor for elements within a structure. For example, assume the following structure definition,

struct t {
double d1;
char charVal;
short shortVal;
double d2;

 };

If the maximum alignment is 1, the structure can start on any 1-byte boundary, and there are no
gaps between the structure elements.

LabWindows/CVI Compiler Chapter 1

LabWindows/CVI Programmer Reference 1-8 National Instruments Corporation

If the maximum alignment is 8, then this structure must start on an 8-byte boundary, shortVal
starts on a 2-byte boundary, and d2 starts on an 8-byte boundary.

You can set the maximum alignment as follows:

#pragma pack(4) /* sets maximum alignment to 4 bytes */
#pragma pack(8) /* sets maximum alignment to 8-bytes */
#pragma pack() /* resets to the default */

The maximum alignment applied to a structure is based on the last pack pragma statement
seen before the definition of the structure.

Program Entry Points (Windows 95 and NT only)

In Windows 95 and NT, you can use WinMain instead of main as the entry point function to
your program. You might want to do this if you plan to link your executable using an external
compiler. You need to include windows.h for the data types normally used in the WinMain
parameter list. The following is the prototype for WinMain with the Windows data types
reduced to intrinsic C types.

int __stdcall WinMain (void * hInstance, void * hPrevInstance, char * lpszCmdLine
int nCmdShow)

C Library Issues

This section discusses special considerations in LabWindows/CVI in the areas of low-level I/O
functions and the UNIX C library.

Using the Low-Level I/O Functions

Many functions in the UNIX libraries and the C compiler libraries for the PC are not ANSI C
Standard Library functions. In general, LabWindows/CVI implements the ANSI C Standard
Library. Under UNIX, you can call UNIX libraries for the non-ANSI C functions in conjunction
with LabWindows/CVI.

The low-level I/O functions open , close , read , write , lseek , and eof are not in the
ANSI C Standard Library. Under UNIX, these functions are available in the UNIX C library.
See the UNIX Compiler/Linker Issues chapter for more information.

Under Windows, you can use these functions if you include lowlvlio.h . No function panels
are provided.

Chapter 1 LabWindows/CVI Compiler

© National Instruments Corporation 1-9 LabWindows/CVI Programmer Reference

C Data Types and 32-bit Compiler Issues

This section introduces the LabWindows/CVI compiler data types and discusses converting
16-bit source code to 32-bit source code.

Data Types

The LabWindows/CVI data types are shown in Table 1-2.

Table 1-2. LabWindows/CVI Allowable Data Types

Type Size Minimum Maximum

char 8 -128 127

unsigned char 8 0 255

short 16 -32768 32767

unsigned short 16 0 65535

int ; long int 32 -231 231-1

unsigned int 32 0 232-1

unsigned long 32 0 232-1

float 32 -3.40282E+38 3.40282E+38

double ; long double 64 -1.79769E+308 1.79769E+308

pointers (void *) 32 N/A N/A

enum 8, 16, or 32 -231 231-1

The size of an enumeration type depends on the value of its enumeration constant. In
LabWindows/CVI, characters are signed , unless you explicitly declare them unsigned . The
types float and double conform to 4-byte and 8-byte IEEE standard formats.

Converting 16-bit Source Code to 32-bit Source Code

If you are converting LabWindows for DOS applications to LabWindows/CVI applications, use
this section as a guide after you complete the steps in Chapter 12, Converting LabWindows for
DOS Applications, of the Getting Started with LabWindows/CVI manual.

In general, if you make few assumptions about the sizes of data types there is little difference
between a 16-bit compiler and a 32-bit compiler except for the larger capacity of integers and the
larger address space for arrays and pointers.

LabWindows/CVI Compiler Chapter 1

LabWindows/CVI Programmer Reference 1-10 National Instruments Corporation

For example, the code

int x;

declares a two-byte integer in a 16-bit compiler such as LabWindows for DOS. In contrast, a 32-
bit compiler such as LabWindows/CVI handles this code as a declaration of a four-byte integer.
In most cases, this does not cause a problem and the conversion is transparent, because functions
that used two-byte integers in LabWindows for DOS use four-byte integers in LabWindows/CVI.
However, this conversion does cause a problem when a program performs one of the following
actions:

• Passes an array of 16-bit integers to a GPIB, VXI, or Data Acquisition (DAQ) function.

If you use a 32-bit int array to receive a set of 16-bit integers from a device, two 16-bit
values are packed into each element of the 32-bit array. Any attempt to access the array on an
element-by-element basis will not work. Declare the array as short instead, and make sure
any type specifiers that refer to it have the [b2] modifier when passed as an argument to a
Formatting and I/O Library function.

• Uses an int variable in a way that requires it to be a two-byte integer.

For example, if you pass an int argument by address to a function in the Formatting and I/O
Library, such as a Scan source or a Scan /Fmt target, and it matches a %d[b2] or %i[b2]
specifier, it will not work correctly. Remove the [b2] modifier, or declare the variable as
short .

Conversely, if you pass a short argument by address and it matches a %d or %i specifier
without the [b2] modifier, it will not work correctly. Add the [b2] modifier.

Note: The default for %d is 2 bytes on a 16-bit compiler and 4 bytes on a 32-bit compiler.
In the same way, the default for int is 2 bytes on a 16-bit compiler, and 4 bytes on
a 32-bit compiler. This is why you do not need to make any modifications if the
specifier for a variable of type int is %d.

All pointers are 32-bit offsets. LabWindows/CVI does not use the far pointers that have both a
segment selector and an offset, except in 16-bit Windows DLLs. LabWindows/CVI for
Windows 3.1 runs 16-bit DLLs through a special interface generated from the header file for the
DLL. See the Using 32-Bit Watcom Compiled Modules under Windows 3.1 and 16-Bit Windows
DLLs sections in Chapter 4, Windows 3.1 Compiler/Linker Issues, for more information.

Debugging Levels

You can compile the source modules in your application with debugging information so that you
can use breakpoints and view or modify variables and expressions while your program is
running. You set the debugging level by selecting the Run Options command in the Options
menu of the Project window. The user selectable debugging levels are as follows:

Chapter 1 LabWindows/CVI Compiler

© National Instruments Corporation 1-11 LabWindows/CVI Programmer Reference

• None—Source modules execute faster without debugging, but you sacrifice the ability to
set breakpoints or to use the Variable Display window, and there is no user protection to
check for bad pointers, over-indexing arrays, invalid array sizes, and so on.

• Standard—In this mode you can set breakpoints, use the Variable Display window, and
you have user protection.

• Extended—In this mode, you have the same benefits of Standard mode along with added
user protection that validates every attempt to free dynamically allocated memory by
verifying that the address passed is actually the beginning of an allocated block.

User Protection

User protection detects invalid program behavior which could not otherwise have been
determined during compilation. LabWindows/CVI reports such invalid program behavior as user
protection errors. When you set the debugging level to Standard or Extended, LabWindows/CVI
maintains extra information for arrays, structures and pointers and uses the information at run
time to determine the validity of addresses.

There are two groups of user protection errors based upon two characteristics: severity level and
error category. In each case, the ANSI C standard states that programs with these errors have
undefined behavior. The two severity levels are described below.

• Non-Fatal errors include expressions that are likely to cause problems, but do not directly
affect program execution. Examples include bad pointer arithmetic, attempts to free pointers
more than once, and comparisons of pointers to different array objects. The expression is
invalid and its behavior is undefined, but execution may continue.

• Fatal errors include expressions that cannot be executed without causing major problems,
such as aborting the program. For example, dereferencing an invalid pointer value is a fatal
error.

Error categories include pointer protection, dynamic memory protection, library protection and
general protection errors. Each of these categories is further divided into subgroups as described
in the following sections.

Array Indexing and Pointer Protection Errors

The pointer protection errors catch invalid operations with pointers and arrays. These errors are
grouped by the type of expression causing the error or the type of invalid pointer involved.

LabWindows/CVI Compiler Chapter 1

LabWindows/CVI Programmer Reference 1-12 National Instruments Corporation

Pointer Arithmetic (Non-Fatal)

Pointer arithmetic expressions involve a pointer sub-expression and an integer sub-expression.
LabWindows/CVI generates an error when the pointer sub-expression is invalid or when the
arithmetic operation would result in an invalid pointer expression. The following user protection
errors involve pointer arithmetic.

• Pointer arithmetic involving uninitialized pointer

• Pointer arithmetic involving null pointer

• Out-of-bounds pointer arithmetic (calculation of an array address resulted in a pointer value
either before the start, or past the end of the array)

• Pointer arithmetic involving pointer to freed memory

• Pointer arithmetic involving invalid pointer

• Pointer arithmetic involving address of non-array object

• Pointer arithmetic involving pointer to function

• Array index too large

• Negative array index

Pointer Assignment (Non-Fatal)

LabWindows/CVI generates pointer assignment errors when pointer variables are assigned an
invalid pointer value. These warnings can help determine when a particular pointer becomes
invalid. The following user protection errors involve pointer assignment.

• Assignment of uninitialized pointer value

• Assignment of out-of-bounds pointer expression (assigned to a pointer an address before the
start, or past the last element, of an array)

• Assignment of pointer to freed memory

• Assignment of invalid pointer expression

Chapter 1 LabWindows/CVI Compiler

© National Instruments Corporation 1-13 LabWindows/CVI Programmer Reference

Pointer Dereference Errors (Fatal)

Dereferencing of invalid pointer values is a fatal error because it can cause a memory fault or
other serious problem. The following user protection errors involve pointer dereferencing.

• Dereference of uninitialized pointer

• Dereference of null pointer

• Dereference of out-of-bounds pointer (dereference using a pointer value before the start, or
past the end, of an array)

• Dereference of pointer to freed memory

• Dereference of invalid pointer expression

• Dereference of data pointer used as a function

• Dereference of function pointer used as data

• Dereference of an n-byte object where only m exist

• Dereference of unaligned pointer (UNIX only)

Pointer Comparison (Non-Fatal)

LabWindows/CVI generates pointer comparison errors for erroneous pointer comparison
expressions. The following user protection errors involve pointer comparison.

• Comparison involving uninitialized pointer

• Comparison involving null pointer

• Comparison involving invalid pointer

• Comparison of pointers to different objects

• Pointer comparison involving address of non-array object

• Comparison of pointers to freed memory

LabWindows/CVI Compiler Chapter 1

LabWindows/CVI Programmer Reference 1-14 National Instruments Corporation

Pointer Subtraction (Non-Fatal)

LabWindows/CVI generates pointer subtraction errors for erroneous pointer subtraction
expressions. The following user protection errors involve pointer subtraction.

• Subtraction involving uninitialized pointer

• Subtraction involving null pointer

• Subtraction involving invalid pointer

• Subtraction of pointers to different objects

• Pointer subtraction involving address of non-array object

• Subtraction of pointers to freed memory

Pointer Casting (Non-Fatal)

LabWindows/CVI generates a pointer casting error when a pointer expression is cast to type
(AnyType *) and there is not enough space for an object of type AnyType at the location
given by the expression. This occurs only when casting a dynamically allocated object for the
first time, such as with the code (double *) malloc(1) , which returns the following error.

• Not enough space for casting expression to type

Dynamic Memory Protection Errors

Dynamic memory protection errors report illegal operations with dynamic memory and corrupted
dynamic memory during allocation and deallocation.

Memory Deallocation (Non-Fatal)

LabWindows/CVI generates memory deallocation errors when the pointer is not the result of a
memory allocation. The following user protection errors involve memory deallocation.

• Attempt to free uninitialized pointer

• Attempt to free pointer to freed memory

• Attempt to free invalid pointer expression

• Attempt to free pointer not allocated with malloc or calloc

• Cannot free: memory not allocated by malloc or calloc

Chapter 1 LabWindows/CVI Compiler

© National Instruments Corporation 1-15 LabWindows/CVI Programmer Reference

Memory Corruption (Fatal)

LabWindows/CVI generates memory corruption errors when a memory allocation/deallocation
detects corrupted memory. During each dynamic memory operation, LabWindows/CVI checks
to verify the integrity of the memory blocks. When you set the Debugging Level to Extended,
LabWindows/CVI thoroughly checks dynamic memory for each memory operation.
LabWindows/CVI generates the following error when a problem is discovered.

• Dynamic memory is corrupt

General Protection Errors

LabWindows/CVI also checks for stack overflow (a fatal error) and for missing return values (a
non-fatal error).

• Stack overflow (fatal)

• Missing return value (non-fatal)

The missing return value error means that a non-void function (one that was not declared with
void return type) has returned, but has not returned a value.

Library Protection Errors

Library functions sometimes generate errors when they receive invalid arguments.
LabWindows/CVI error checking is sensitive to the requirements of each library function. The
following errors involve library protection.

• Null pointer argument to library function

• Uninitialized pointer argument to library function

• Pointer to free memory passed to library function

• Array argument too small

• Scalar argument to library function; expected array

• Missing terminating null in string argument

• Argument must be a character

LabWindows/CVI reports other library dependent errors because the library function could not
perform its task for some reason. These errors typically return a special value from the library
function or set a global variable that indicates the error. However, if you have enabled Break on
Library Errors in the Run Options command in the Options menu of the Project window,

LabWindows/CVI Compiler Chapter 1

LabWindows/CVI Programmer Reference 1-16 National Instruments Corporation

LabWindows/CVI suspends execution after a library function reports one of these errors. A
message appears that displays the name of the function and either the return value or a string
explaining why the function failed.

Disabling User Protection

Occasionally, you may want to disable user protection to avoid run-time errors that do not cause
problems in your program.

Disabling Protection Errors at Run-time

You can use the SetBreakOnProtectionErrors function in the Utility Library to
programatically control whether LabWindows/CVI suspends execution when it encounters a
general protection or library protection error. This function does not affect the Break on Library
Errors feature.

Disabling Library Errors at Run-time

The Break on Library Errors checkbox in the Run Options command in the Options menu of
the Project window defines the initial state for reporting library errors when executing the
project. Additionally, you can use the SetBreakOnLibraryErrors function in the Utility
Library to programatically control whether LabWindows/CVI suspends execution when a library
function returns an error. Use of this function does not affect the reporting of general protection
or library protection errors.

Disabling Protection for Individual Pointer

You can disable pointer checking for a particular pointer by casting it first to an arithmetic type
and then back to its original type, as in the following macro.

#define DISABLE_RUNTIME_CHECKING(ptr) ((ptr) = (void *)((unsigned) (ptr)))
{

char *charPointer;

/*run-time checking is performed for charPointer before this line */
DISABLE_RUNTIME_CHECKING(charPointer);
/* no run-time checking is performed for charPointer after this line */

}

This macro could be useful in the following situation: LabWindows/CVI reports erroneous run-
time errors because you set a pointer to dynamic memory in a source module and you then re-
size it in an object module. The following steps describe how this error occurs.

Chapter 1 LabWindows/CVI Compiler

© National Instruments Corporation 1-17 LabWindows/CVI Programmer Reference

1. You declare a pointer in a source module compiled with debugging enabled. You then assign
to the pointer an address returned by malloc or calloc :

AnyType *ptr;
ptr = malloc(N);

2. You reallocate the pointer in an object module so that it points to the same location in
memory as before. You can do this with the function realloc or by freeing the pointer and
then reassigning it to memory allocated by malloc :

ptr = realloc(ptr, M); /* M > N */

or

free(ptr);
ptr = malloc(M);

3. You use the same pointer in a source module compiled with debugging enabled. At this
point, LabWindows/CVI still expects the pointer to point to a block of memory of the
original size (N) .

(ptr+(M-1)) / This generates a fatal run-time error, */
/* even though it is a legal expression. */

To prevent this error, use the DISABLE_RUNTIME_CHECKING macro shown above to disable
checking for the pointer before it is used in the source module:

DISABLE_RUNTIME_CHECKING(ptr);
ptr = malloc(N);

Disabling Library Protection Errors for Functions

You can also disable or enable library protection errors by placing pragmas in the source code.
These pragmas are ignored when you compile without debugging information (that is, if the
debugging level is None). For example, the following two pragmas enable and disable library
checking for all the function declarations that occur after the pragma within a header or source
file. The pragmas affect only the functions declared in the file in which the pragmas occur.
Nested include files are not affected.

#pragma EnableLibraryRuntimeChecking
#pragma DisableLibraryRuntimeChecking

The following two pragmas enable and disable library checking for a particular function. You
must declare the function before the occurrence of the pragma.

#pragma EnableFunctionRuntimeChecking function
#pragma DisableFunctionRuntimeChecking function

LabWindows/CVI Compiler Chapter 1

LabWindows/CVI Programmer Reference 1-18 National Instruments Corporation

These two pragmas enable and disable run-time checking for a particular library function
throughout the module in which they appear. You can use them to override the effects of the
EnableLibraryRuntimeChecking and DisableLibraryRuntimeChecking
pragmas for individual functions. If both of these pragmas occur in a module for the same
function, LabWindows/CVI uses only the last occurrence.

Note: These pragmas affect all protection (including run-time checking of function
arguments) for all calls to a specific library function. To disable and enable only the
library errors for particular calls to a library function, without affecting the run-time
checking of argument values, use the Utility Library function
SetBreakOnLibraryErrors .

You cannot use pragmas to disable protection for the functions in the statically linked
libraries (User Interface, RS-232, TCP, DDE, Formatting and I/O, Utility, X Property,
and ANSI C libraries), unless you place the DisableLibraryRuntimeChecking
pragma at the top of the library header file. You can disable library protection for
these functions at run-time, however, by using the Utility Library function
SetBreakOnLibraryErrors . See the LabWindows/CVI Standard Libraries
Reference Manual for more information on the Utility Library.

Details of User Protection

Pointer Casting

A cast expression consists of a left parenthesis, a type name, a right parenthesis, and an operand
expression. The cast causes the operand value to be converted to the type named within the
parenthesis.

C programmers occasionally need to cast a pointer to one data type to a pointer to another data
type. Because LabWindows/CVI does not restructure the user protection information for each
cast expression, certain types of cast expressions implicitly disable run-time checking for the
pointer value. In particular, casting a pointer expression to the following types disables run-time
checking on the resulting value.

• Pointer to a pointer: (AnyType **) PointerExpression

• Pointer to a structure:(struct AnyStruct *) PointerExpression

• Pointer to an array: (AnyType (*)[]) PointerExpression

• Any non-pointer type:(unsigned) PointerExpression ,
(int) PointerExpression , and so on

Note: There is an exception. The cast applied implicitly or explicitly to void * values
obtained from malloc or calloc does not disable user protection.

Chapter 1 LabWindows/CVI Compiler

© National Instruments Corporation 1-19 LabWindows/CVI Programmer Reference

Casting from a pointer to one arithmetic type to a pointer to a different one, such as (int *) ,
(unsigned *) , (short *) , and so on, does not affect run-time checking on the resulting
pointer, nor does casting a pointer to a void pointer (void *) .

Dynamic memory

LabWindows/CVI also provides run-time error checking for pointers and arrays in dynamically
allocated memory.

You can use the ANSI C library functions malloc or calloc to allocate dynamic memory.
These functions return void * values which you must cast to some other type before the
memory can be used. During program execution, LabWindows/CVI uses the first such cast on
the return value of each call to these functions to determine the type of the object that will be
stored in the dynamic memory. Subsequent casts to different types may disable checking on the
dynamic data, as explained in the Pointer Casting discussion in this section.

You can use the realloc function to re-size dynamically allocated memory. This function
increases or decreases the size of the object associated with the dynamic memory.

Library Functions

The LabWindows/CVI library functions that have pointer arguments or that return pointers
incorporate run-time checking for those arguments and return values. However, you must be
careful when passing arguments to library functions that have void * parameters, such as
GetCtrlAttribute and GetCtrlVal in the User Interface Library and memcpy and
memset in the ANSI C library. Do not use a void * cast when passing an argument to a
function that expects a variably typed argument. Some examples follow.

{
int value;
GetCtrlVal(panel, ctrl, &value); /* CORRECT */
GetCtrlVal(panel, ctrl, (void *)&value); /* INCORRECT */

}
{

char *names[N], *namesCopy[N];
memcpy(namesCopy, names, sizeof names); /* CORRECT */
memcpy((void *)namesCopy, (void *)names, sizeof names); /* INCORRECT */

}

Unions

LabWindows/CVI performs only minimal checks for union type variables. If a union contains
pointers, arrays or structs, LabWindows/CVI does not maintain user protection information for
those objects.

LabWindows/CVI Compiler Chapter 1

LabWindows/CVI Programmer Reference 1-20 National Instruments Corporation

Stack Size
The stack is used for passing function parameters and storing automatic local variables. The
maximum stack size can be set when you select the Run Options command in the Options
menu of the Project window. LabWindows/CVI supports the following ranges.

Table 1-3. Stack Size Ranges for LabWindows/CVI

Platform Minimum Default Maximum

Windows 3.1 4 KB 16 KB 16 KB

Windows 95 and NT 100 KB 100 KB 1 MB

Solaris 1 for Sun 100 KB 100 KB 5 MB

Solaris 2 for Sun 100 KB 100 KB 5 MB

Note: For LabWindows/CVI for Windows 3.1, the actual stack size approaches 64 KB when
the Debugging Level is None.

Include Paths
The Include Paths command in the Options menu of the Project window specifies the directory
search path for include files. The Include Paths dialog box has two lists, one for include paths
specific to the project, and one for paths not specific to the project.

When you install VXIplug&play instrument drivers, the include files for the drivers are placed in
a specific VXIplug&play include directory. LabWindows/CVI also searches that directory for
include files.

Include Path Search Precedence

LabWindows/CVI searches for include files in the following locations and in the following order.

• Project list

• Project-specific user-defined include paths

• Non-project-specific user-defined include paths

• The paths listed in the Instrument Directories dialog box

• The cvi\include directory

• The cvi\include\ansi directory

• The VXIplug&play include directory

• The cvi\instr directory

• The cvi\include\sdk directory (Windows 95/NT only)

© National Instruments Corporation 2-1 LabWindows/CVI Programmer Reference

Chapter 2
Using Loadable Compiled Modules

This chapter describes the advantages and disadvantages of using compiled code modules in your
application. It also describes the kinds of compiled modules available in LabWindows/CVI. See
Chapter 3, Windows 95 and NT Compiler/Linker Issues, Chapter 4, Windows 3.1
Compiler/Linker Issues, or Chapter 5, UNIX Compiler/Linker Issues, in this manual for more
information on platform specific programming guidelines for modules generated by external
compilers.

About Loadable Compiled Modules

There are several ways to use compiled modules in LabWindows/CVI. You can load compiled
modules directly into the LabWindows/CVI environment as instrument driver programs or as
user libraries, so that they are accessible to any project. You can list compiled modules in your
project, so that they are accessible only within that project. You can use compiled modules
dynamically in your program with the functions, LoadExternalModule ,
RunExternalModule , and UnloadExternalModule . Any compiled module you use in
LabWindows/CVI must be in one of the following forms.

• A .obj file on the PC, or a .o file under UNIX, containing one or multiple object modules

• A .lib file on the PC, or an .a file under UNIX, containing one or more object modules

• In Windows only, a .dll file containing a Windows dynamic-link library (DLL)

You can create any of these compiled modules in LabWindows/CVI under Windows 95 and NT,
or using a compatible external compiler. On Windows 3.1, LabWindows/CVI can create .obj
files only. Under UNIX, LabWindows/CVI or compatible compilers can create .o files.

Advantages and Disadvantages of Using Loadable Compiled Modules in
LabWindows/CVI

Using compiled modules in LabWindows/CVI has the following advantages.

• Compiled modules run faster than source modules. Compiled modules generated by
LabWindows/CVI run faster than source modules because all of the debugging and user
protection information has been removed. Compiled modules generated by external
compilers can run faster because of optimization.

• Users of your program cannot modify your source code.

Using Loadable Compiled Modules Chapter 2

LabWindows/CVI Programmer Reference 2-2 © National Instruments Corporation

Using compiled modules in LabWindows/CVI has the following disadvantages.

• You cannot debug compiled modules. To debug a program, you must set breakpoints and
view the variables used by your program. Because compiled modules do not contain any
debugging information, you cannot use these debugging features in those modules.

• Compiled modules do not include run-time error checking or user protection.

Using a Loadable Compiled Module as an Instrument Driver Program File

An instrument driver is a set of high-level functions with graphical function panels to make
programming easier. It encapsulates many low-level operations, such as data formatting and
GPIB, RS-232, and VXI communication, into intuitive, high-level functions. An instrument
driver usually controls a physical instrument, but it can also be a software utility. The use of
instrument drivers is described in the Using Instrument Drivers and Instruments Menu sections
of Chapter 3, Project Window, of the LabWindows/CVI User Manual.

During debugging, load the instrument driver program file into LabWindows/CVI as a source
file. After you debug it, you can compile the instrument driver program file. You can call an
instrument driver from any code module in any project, and from the Interactive Execution
window. If you enable Require function prototypes through the Compiler Preferences
command in the Options menu, you must include the .h file for the instrument driver in the
calling code module. You can manually load or unload instrument drivers at any time.

See the LabWindows/CVI Instrument Driver Developers Guide for information on how to create
an instrument driver.

If the instrument driver program file is a compiled module, it must adhere to the requirements
outlined for each operating system in Chapter 3, Windows 95 and NT Compiler/Linker Issues,
Chapter 4, Windows 3.1 Compiler/Linker Issues, Chapter 5, UNIX Compiler/Linker Issues.

Using a Loadable Compiled Module as a User Library

You may install your own libraries into the Library menu. A user library has the same form as
an instrument driver. Anything that can be loaded with the Instruments menu can be loaded as
a user library, provided the program is in compiled form. See the Using Instrument Drivers and
the Instruments Menu sections of Chapter 3, Project Window, of the LabWindows/CVI User
Manual for more information. The main difference between modules loaded as instrument
drivers and those loaded as user libraries is that instrument drivers can be unloaded using the
Unload command in the Instrument menu, but user libraries cannot be unloaded. Also, because
user libraries must be compiled, they cannot be edited while they are loaded as libraries.

Install user libraries by selecting the Library Options command in the Project Options menu.
The next time you run LabWindows/CVI, the libraries load automatically and appear at the
bottom of the Library menu.

Chapter 2 Using Loadable Compiled Modules

© National Instruments Corporation 2-3 LabWindows/CVI Programmer Reference

You can develop a user library module to provide support functions for instrument drivers or any
other modules in your project. In such a case, function panels may not be necessary for the
library module. If the .fp file for the library module contains no classes or functions, the name
does not appear in the Library menu when the user library is loaded.

You can call a compiled module loaded as a user library from any code module in any project
and from the Interactive Execution window. If you enable Require function prototypes with
the Compiler Preferences command in the Options menu, you must include the .h file for the
user library in the module that is making the call.

See the LabWindows/CVI Instrument Driver Developers Guide for information about creating
instrument drivers. You can create user libraries the same way you create instrument drivers.

User libraries must adhere to the requirements outlined for the target operating system. The
operating system requirements are discussed in the following chapters: Chapter 3, Windows 95
and NT Compiler/Linker Issues, Chapter 4, Windows 3.1 Compiler/Linker Issues, Chapter 5,
UNIX Compiler/Linker Issues.

Using a Loadable Compiled Module in the Project List

You can call a compiled module in the project list from any code module in that project. If you
enable Require function prototypes by selecting the Compiler Preferences command in the
Options menu, you must include the .h file for the compiled module in the calling code module.

Compiled modules must adhere to the requirements outlined for the target operating system. The
operating system requirements are discussed in the following chapters: Chapter 3, Windows 95
and NT Compiler/Linker Issues, Chapter 4, Windows 3.1 Compiler/Linker Issues, Chapter 5,
UNIX Compiler/Linker Issues.

Using a Loadable Compiled Module as an External Module

You can develop a special program and load it as an external module. You can load, execute,
and unload this external module programmatically from a Source window or the Interactive
Execution window, using the LoadExternalModule , RunExternalModule , and
UnloadExternalModule functions. See Chapter 8, Utility Library, of the LabWindows/CVI
Standard Libraries Reference Manual for more information on using these functions.

During debugging, list the external module in the project as a source file. After you debug it,
you can compile the external module. External modules must adhere to the requirements
outlined for the target operating system. The operating system requirements are discussed in
the following chapters: Chapter 3, Windows 95 and NT Compiler/Linker Issues, Chapter 4,
Windows 3.1 Compiler/Linker Issues, Chapter 5, UNIX Compiler/Linker Issues.

Using Loadable Compiled Modules Chapter 2

LabWindows/CVI Programmer Reference 2-4 © National Instruments Corporation

Special Considerations When Using a Loadable Compiled Module

You may need to notify certain compiled modules when the program starts, suspends, continues,
or stops. For example, a compiled module that has asynchronous callbacks must not call the
program callbacks when program execution is suspended at a breakpoint. LabWindows/CVI has
a callback mechanism you can use to inform a compiled module of changes in the program
status.

If you have to notify a compiled module of changes in the run state, install the callback
automatically by naming it __RunStateChangeCallback , and including it in the compiled
module. This callback must be in a compiled file, not in a source file. More than one compiled
module may contain functions with this name, because it is never entered into the global name
space. The prototype for the callback is as follows.

void __RunStateChangeCallback(int action)

The actions are defined in libsupp.h as the following enumerated type:

enum {
 kRunState_Start,
 kRunState_Suspend,
 kRunState_Resume,
 kRunState_AbortingExecution,
 kRunState_Stop,
 kRunState_EnableCallbacks,
 kRunState_DisableCallbacks
};

Two examples of typical program state changes are listed below.

Example 1

kRunState_Start
kRunState_EnableCallbacks

/* user program execution begins */
.
.
.

/* a breakpoint or run-time error occurs, or user presses the Terminate
Execution key combination */

kRunState_DisableCallbacks
kRunState_Suspend

/* program execution is suspended; CVI environment resumes */
.
.
.

Chapter 2 Using Loadable Compiled Modules

© National Instruments Corporation 2-5 LabWindows/CVI Programmer Reference

/* user requests the execution be resumed, via the "Continue", "Step
Over", etc., commands */

kRunState_Resume
kRunState_EnableCallbacks

/* user program execution resumes */
.
.
.
/* user program execution completes normally */

kRunState_DisableCallbacks
kRunState_Stop

Example 2

kRunState_Start
kRunState_EnableCallbacks

/* user program execution begins */
.
.
.
/* a breakpoint or run-time error occurs, or user presses the Terminate

Execution key combination */
kRunState_DisableCallbacks
kRunState_Suspend

/* program execution is suspended; CVI environment resumes */
.
.
.
/* user selects the Terminate Execution command */

kRunState_DisableCallbacks /* even though callbacks already disabled */
kRunState_AbortingExecution

/* long jump out of user program */
kRunState_DisableCallbacks /* even though callbacks already disabled */
kRunState_Stop

Note: A Suspend notification is not always followed by a Resume notification. A Stop
notification can follow a Suspend notification without an intervening Resume
notification.

Note: Run State Change Callbacks do not work in programs linked in external compilers.

Compiled Modules Using Asynchronous Callbacks

If a compiled module calls a program function asynchronously (such as through interrupts or
signals), it must announce the callback by calling EnterAsyncCallback before calling the
callback, and calling ExitAsyncCallback after calling the callback.
EnterAsyncCallback and ExitAsyncCallback have one parameter, which is a pointer
to a buffer of size ASYNC_CALLBACK_ENV_SIZE. The same buffer must be passed into
ExitAsyncCallback that was passed into EnterAsyncCallback because the buffer is
used to store state information. The definition of ASYNC_CALLBACK_ENV_SIZE and the
prototypes for these two functions are in libsupp.h .

© National Instruments Corporation 3-1 LabWindows/CVI Programmer Reference

Chapter 3
Windows 95 and NT Compiler/Linker Issues

The compiler/linker capabilities of LabWindows/CVI for Windows 95 and NT are significantly
enhanced, compared to LabWindows/CVI for Windows 3.1. A key enhancement is compatibility
with four external 32-bit compilers: Microsoft Visual C/C++, Borland C/C++,
WATCOM C/C++, and Symantec C/C++. In this manual, the four compilers are referred to as
the compatible external compilers.

In LabWindows/CVI under Windows 95 and NT, you can do the following.

• Load 32-bit DLLs, via the standard import library mechanism

• Create 32-bit DLLs and DLL import libraries

• Create library files as well as object files

• Call the LabWindows/CVI libraries from executables or DLLs created in any of the four
compatible external compilers

• Create object files, library files, and DLL import libraries that can be used in the compatible
external compilers

• Load object files, library files, and DLL import libraries created in any of the compatible
external compilers.

• Call Windows SDK functions

This chapter discusses these capabilities.

Loading 32-bit DLLs under Windows 95 and NT

Under Windows 95 and NT, LabWindows/CVI can load 32-bit DLLs. Under Windows 3.1,
LabWindows/CVI can load 16-bit DLLs only. Because the environment is 32-bit, special glue
code is no longer needed under Windows 95 and NT. LabWindows/CVI links to DLLs via the
standard 32-bit DLL import libraries that you generate when you create 32-bit DLLs with any of
the compilers. Because DLLs are linked in this way, you can no longer specify a DLL file
directly in your project. You must specify the DLL import library file instead.

Windows 95 and NT Compiler/Linker Issues Chapter 3

LabWindows/CVI Programmer Reference 3-2 © National Instruments Corporation

DLLs for Instrument Drivers and User Libraries

Under Windows 95 and NT, a DLL is never directly associated with an instrument driver or user
library. Instead, an instrument driver or user library can be associated with a DLL import library.
Each DLL must have a DLL import library (.lib) file. In general, if the program for an
instrument driver or user library is contained in a DLL, there must be a DLL import library in the
same directory as the function panel (.fp) file. The DLL import library specifies the name of the
DLL, which is then searched for using the standard Windows DLL search algorithm.

An exception is made to facilitate using VXIplug&play instrument driver DLLs. When you
install a VXIplug&play instrument driver, the DLL import library is not placed in the same
directory as the .fp file. If a .fp file is in the VXIplug&play directory, LabWindows/CVI
searches for an import library in the VXIplug&play import library directory before it looks for a
program file in the directory of the .fp file, unless a program file in the directory of the .fp file
(and with the same base name as the .fp file) is listed in the project and is not excluded.

Using The LoadExternalModule Function

When using the LoadExternalModule function to load a DLL at run time, you must specify
the pathname of the DLL import library, not the name of the DLL.

Link Errors when Using DLL Import Libraries

A DLL import library must not contain any references to symbols that are not exported by the
DLL. If it does, LabWindows/CVI reports a link error. (If you load the DLL using
LoadExternalModule , the GetExternalModuleAddr function reports an undefined
references (-5) error.) You can solve this problem by using LabWindows/CVI to generate an
import library. See Generating an Import Library later in this section.

DLL Path (.pth) Files Not Supported

The DLL import library contains the file name of the DLL. LabWindows/CVI uses the standard
Windows DLL search algorithm to find the DLL. Thus, DLL path (.pth) files do not work
under Windows 95 and NT.

16-Bit DLLs Not Supported

LabWindows/CVI for Windows 95 and NT does not load 16-bit DLLs. If you want to do so, you
must obtain a 32-to-16-bit thunking DLL and a 32-bit DLL import library.

Chapter 3 Windows 95 and NT Compiler/Linker Issues

© National Instruments Corporation 3-3 LabWindows/CVI Programmer Reference

Generating an Import Library

If you do not have a DLL import library or if the one you have contains references not exported
by the DLL, you can generate an import library in LabWindows/CVI. You must have an include
file that contains the declarations of all of the functions and global variables you want to access
from the DLL. Load the include file into a Source window, and select the Generate DLL
Import Library command in the Options menu.

Default Unloading/Reloading Policy

Some fundamental differences exist in the way DLLs being used by multiple processes are
handled in Windows 95/NT and Windows 3.1.

Under Windows 95/NT, a separate data space is created for each process that is using the DLL.
Under Windows 3.1, a DLL being used by multiple processes has only one data space.

Under Windows 95/NT, a DLL is notified each time it is loaded or unloaded by a process. Under
Windows 3.1, a DLL is not notified each time it is loaded or unloaded by a process. It is notified
only when the first process loads it and the last process unloads it.

In LabWindows/CVI for Windows 95 and NT DLLs are, by default, unloaded after each
execution of a user program in the development environment. This behavior more accurately
simulates what happens when you execute a standalone executable, and it is more suitable for
Windows 95 and NT DLLs that rely on load/unload notification on each execution of a program.
You can change the default behavior by turning off the Unload DLLs After Each Run option in
the Run Options dialog box.

In LabWindows/CVI for Windows 3.1, DLLs are, by default, kept in memory between
executions of user programs in the development environment. This policy saves the time it takes
to reload DLLs for each execution. Because Windows 3.1 DLLs cannot rely on being notified
that they are being loaded or unloaded, they should be able to operate correctly under such
conditions. You can cause DLLs to be reloaded before each run by setting the Reload DLLs
Before Each Run option in the Run Options dialog box.

Compatibility with External Compilers

LabWindows/CVI for Windows 95 and NT can be compatible at the object code level with any
of the four compatible external compilers (Microsoft Visual C/C++, Borland C/C++,
WATCOM C/C++, and Symantec C/C++). Because these compilers are not compatible each
other at the object code level, LabWindows/CVI can be compatible with only one external
compiler at a time. In this manual, the compiler with which your copy of LabWindows/CVI is
currently compatible is referred to as the selected compatible compiler.

Windows 95 and NT Compiler/Linker Issues Chapter 3

LabWindows/CVI Programmer Reference 3-4 © National Instruments Corporation

Choosing Your Compatible Compiler

When installing LabWindows/CVI, you must choose your compatible compiler. If sometime
later you want to change your choice of compatible compiler, you can run the installation
program and change to another compatible compiler.

You can see which compatible compiler is active in LabWindows/CVI by selecting the
Compiler Options command in the Options menu of the Project window.

Object Files, Library Files, and DLL Import Libraries

If you create an object file, library file, or DLL import library in LabWindows/CVI, the file can
be used only in the selected compatible compiler or in a copy of LabWindows/CVI that has been
installed with the same compatibility choice.

If you load an object file, library file, or DLL import library file in LabWindows/CVI, the file
must have been created either in the selected compatible compiler or in a copy of
LabWindows/CVI that has been installed with the same compatibility choice. If you have a DLL
but you do not have a compatible DLL import library, you can create one in LabWindows/CVI.
You must have an include file that contains the declarations of all of the functions and global
variables you want to access from the DLL. Load the include file into a Source window, and
select the Generate DLL Import Library command in the Options menu.

DLLs

In general, a DLL can be used without regard to compiler used to create it. Only the DLL import
library must have been created using the correct compiler or compatibility choice. There are
some cases, however, in which a DLL created using one compiler cannot be used in an
executable or DLL created using another compiler. If you want to create DLLs that can be used
in different compilers, you should design the API for your DLL to avoid such problems. The
following are the areas in which the DLLs created in external compilers are not fully compatible.

Structure Packing

The compilers differ in their default maximum alignment of elements within structures.

If your DLL API uses structures, you should guarantee compatibility among the different
compilers by using the pack pragma to specify a specific maximum alignment factor. You
should place this pragma in the DLL include file, before the definitions of the structures. (You
can choose any alignment factor.) After the structure definitions, you should reset the maximum
alignment factor back to the default, as in the following example:

#pragma pack (4) /* set maximum alignment to 4 */

typedef struct {
char a;
int b;

} MyStruct1;

Chapter 3 Windows 95 and NT Compiler/Linker Issues

© National Instruments Corporation 3-5 LabWindows/CVI Programmer Reference

typdef struct {
char a;
double b;

} MyStruct2;

#pragma pack () /* reset max alignment to default */

The __DEFALIGN predefined macro is defined to the default structure alignment.

Bit Fields

Borland C/C++ uses the smallest number of bytes needed to hold the specified bit fields in a
structure. The other compilers always use four-byte elements. You can force compatibility by
adding a dummy bit field of the correct size to pad the set of contiguous bit fields so that they fit
exactly into a four-byte element. Example:

typedef struct {
 int a:1;
 int b:1;
 int c:1;
 int dummy:29; /* pad to 32 bits */
} MyStruct;

Returning Floats and Doubles

The compilers return float and double scalar values using different mechanisms. This is true
of all calling conventions, including __stdcall . The only solution for this problem is to
change your DLL API so that it uses output parameters instead of return values for double and
float scalars.

Returning Structures

For functions not declared with the __stdcall calling convention, the compilers return
structures using different mechanisms. For functions declared with __stdcall , the compilers
return structures in the same way, except for 8-byte structures. We recommend that your DLL
API use structure output parameters instead of structure return values.

Enum Sizes

By default, WATCOM uses the smallest integer size (1-byte, 2-bytes, or 4-bytes) needed to
represent the largest enum value. The other compilers always use four bytes. You should force
compatibility by using the -ei (Force Enums to Type Int) option with the WATCOM compiler.

Windows 95 and NT Compiler/Linker Issues Chapter 3

LabWindows/CVI Programmer Reference 3-6 © National Instruments Corporation

Long Doubles

In Borland C/C++, long double values are ten bytes. In the other compilers, they are eight
bytes. (In LabWindows/CVI, they are always eight bytes). You should avoid using long
double in your DLL API.

Differences with the External Compilers

LabWindows/CVI does not work with all of the non-ANSI extensions provided by each external
compiler. Also, in cases where ANSI does not specify the exact implementation,
LabWindows/CVI does not always agree with the external compilers. Most of these differences
are obscure and rarely encountered. The following are the most important differences you may
encounter.

• wchart_t is only one-byte in LabWindows/CVI.

• 64-bit integers do not exist in LabWindows/CVI.

• long double values are 10 bytes in Borland C/C++ but 8 bytes in LabWindows/CVI.

• You cannot use structured exception handling in LabWindows/CVI.

• You cannot use the WATCOM C/C++ cdecl calling convention in LabWindows/CVI for
functions that return float or double scalar values or structures. (In WATCOM, cdecl
is not the default calling convention.)

External Compiler Versions Supported

The following versions of each external compiler work with LabWindows/CVI for Windows 95
and NT:

• Microsoft Visual C/C++, version 2.2 or higher

• Borland C/C++, version 4.51 or higher

• WATCOM C/C++, version 10.5 or higher

• Symantec C/C++, version 7.2 or higher

Required Preprocessor Definitions

When you use an external compiler to compile source code that includes any of the
LabWindows/CVI include files, add the following to your preprocessor definitions.

_NI_mswin32_

Chapter 3 Windows 95 and NT Compiler/Linker Issues

© National Instruments Corporation 3-7 LabWindows/CVI Programmer Reference

Multithreading and the LabWindows/CVI Libraries
Although the LabWindows/CVI environment is not multithreaded you can use
LabWindows/CVI Libraries in the following multithreaded contexts.

• When the LabWindows/CVI Libraries are called from an multithreaded executable or DLL
created in an external compiler.

• When the LabWindows/CVI Libraries are called from a DLL created in LabWindows/CVI
but loaded from a multithreaded executable created in another compiler.

Some, but not all, of the LabWindows/CVI libraries are multithread safe, as discussed in the
following sections.

Multithread-Safe Libraries

The following libraries can be used in more than one thread at a time:

• Analysis and Advanced Analysis

• GPIB (if you are using a native 32-bit driver)

• VXI

• VTL

• RS-232

• Data Acquisition

• Easy I/O for DAQ

• Formatting and I/O (except for the Standard I/O Window)

• ANSI C (except for the Standard I/O Window)

Also, each of the compatible external compilers includes a multithread-safe version of the ANSI
C standard library.

Note: Although you can use Windows SDK functions to create threads in a
LabWindows/CVI program, none of LabWindows/CVI libraries are multithread safe
when called from programs linked in LabWindows/CVI.

Libraries that are Not Multithread Safe

Currently, the following LabWindows/CVI libraries must be used in only one thread at a time:

• User Interface

• DDE

• TCP

• Utility

Windows 95 and NT Compiler/Linker Issues Chapter 3

LabWindows/CVI Programmer Reference 3-8 © National Instruments Corporation

• GPIB (if you are using a “Windows 3.1 compatibility” driver)

• Formatting and I/O (Standard I/O Window)

• ANSI C (Standard I/O Window)

Using LabWindows/CVI Libraries in External Compilers
Under Windows 95 and NT, you can use the LabWindows/CVI libraries in any of the four
compatible external compilers. You can create executables and DLLs that call the
LabWindows/CVI libraries. All of the libraries are contained in DLLs. (These DLLs are also
used by executable files created in LabWindows/CVI.) DLL import libraries and a startup
library, all compatible with your external compiler, are in the cvi\extlib directory. Never
use the .lib files that are located in the cvi\bin directory.

You must always include the following two libraries in your external compiler project.

cvisupp.lib /* startup library */
cvirt.lib /* import library to DLL containing: */
 /* User Interface Library */
 /* Formatting and I/O Library */
 /* RS-232 Library */
 /* DDE Library */
 /* TCP Library */
 /* Utility Library */

You may also add the following static library file from cvi\extlib to your external compiler
project.

analysis.lib /* Analysis or Advanced Analysis Library */

You may also add the following DLL import library files from cvi/extlib to your external
compiler project.

gpib.lib /* GPIB/GPIB 488.2 Library */
dataacq.lib /* Data Acquisition Library */
easyio.lib /* Easy I/O for DAQ Library */
visa.lib /* VISA Transition Library */
nivxi.lib /* VXI Library */

If you are using an instrument driver that makes references to both the GPIB and VXI libraries,
you can include both gpib.lib and nivxi.lib to resolve the references to symbols in those
libraries. If you do not have access to one of these files, you can replace it with one of following
files:

gpibstub.obj /* stub GPIB functions */
vxistub.obj /* stub VXI functions */

If you are using an external compiler that requires a WinMain entry point, the following
optional library allows you to define only main in your program.

cviwmain.lib /* contains a WinMain() function which calls main() */

Chapter 3 Windows 95 and NT Compiler/Linker Issues

© National Instruments Corporation 3-9 LabWindows/CVI Programmer Reference

Include Files for the ANSI C Library and the LabWindows/CVI Libraries

The cvirt.lib import library contains symbols for all of the LabWindows/CVI libraries,
except the ANSI C standard library. When you create an executable or DLL in an external
compiler, you use the compiler’s own ANSI C standard library. Because of this, you must use the
external compiler’s include files for the ANSI C library when compiling source files. Although
the include files for the other LabWindows/CVI libraries are in the cvi\include directory,
the LabWindows/CVI ANSI C include files are in the cvi\include\ansi directory. Thus,
you can specify cvi\include as an include path in your external compiler while at the same
time using the external compiler’s version of the ANSI C include files.

Note: You need to use the external compiler’s ANSI C include files only when compiling a
source file that you intend to link using the external compiler. If you intend to link the
file in LabWindows/CVI, you need to use the LabWindows/CVI ANSI C include files.
This holds true regardless of which compiler you use to compile the source file.

For more information, see the Setting Up Include Paths for LabWindows/CVI, ANSI C, and SDK
Libraries section later in this chapter.

Standard Input/Output Window

One effect of using the external compiler’s ANSI C standard library, is that the printf and
scanf functions do not use the LabWindows/CVI Standard Input/Output window. If you want
to use printf and scanf , you must create a console application (called a character-mode
executable in WATCOM).

You can continue to use the LabWindows/CVI Standard Input/Output Window by calling the
FmtOut and ScanIn functions in the Formatting and I/O library.

Resolving Callback References From .UIR Files

When you link your program in LabWindows/CVI, LabWindows/CVI keeps a table of the non-
static functions that are in your project. When your program calls LoadPanel or
LoadMenuBar , the LabWindows/CVI User Interface Library uses this table to find the callback
functions associated with the objects being loaded from the user interface resource (.uir) file.
This is true whether you are running your program in the LabWindows/CVI development
environment or as a standalone executable.

When you link your program in an external compiler, no such table is made available to the User
Interface Library. To resolve callback references, you must use LabWindows/CVI to generate an
object file containing the necessary table.

1. Create a LabWindows/CVI project containing the .uir files used by your program (if
you do not already have one).

Windows 95 and NT Compiler/Linker Issues Chapter 3

LabWindows/CVI Programmer Reference 3-10 © National Instruments Corporation

2. Select the External Compiler Support command in the Build menu of the Project
window. A dialog box appears.

3. In the UIR Callbacks Object File control, enter the pathname of the object file to be
generated. When you click on the Create button, the object file is generated with a table
containing the names of all of the callback functions referenced in all of the .uir files in
the currently loaded project. If the project is loaded and you modify and save any of these
.uir files, the object file is regenerated to reflect the changes.

4. Include this object file in the external compiler project you use to create the executable.

5. You must call InitCVIRTE at the beginning of your main or WinMain function. See
the InitCVIRTE and CloseCVIRTE section later in this chapter.

Linking to Callback Functions Not Exported From a DLL

Normally, the User Interface Library searches for callback functions only in the table of
functions in the executable. When you load a panel or menu bar from a DLL, you may want to
link to non-static callback functions contained in, but not exported by, the DLL. You can do this
by calling the LoadPanelEx and LoadMenuBarEx functions. When you pass the DLL
module handle to LoadPanelEx and LoadMenuBarEx , the User Interface Library searches
the table of callback functions contained in the DLL before searching the table contained in the
executable. Refer to See Chapter 4, User Interface Library Function Reference, of the
LabWindows/CVI User Interface Reference Manual for detailed information on LoadPanelEx
and LoadMenuBarEx .

If you create your DLL in LabWindows/CVI, the table of functions is included in the DLL
automatically. If you create your DLL using an external compiler, you must generate an object
file containing the necessary table as follows.

1. Create a LabWindows/CVI project containing the .uir files loaded by your DLL (if you
do not already have one).

2. Select the External Compiler Support command in the Build menu of the Project
window. A dialog box appears.

3. In the UIR Callbacks Object File control, enter the pathname of the object file to be
generated. When you click on the Create button, the object file is generated with a table
containing the names of all of the callback functions referenced in all of the .uir files in
the currently loaded project. If the project is loaded and you modify and save any of these
.uir files, the object file is regenerated to reflect the changes.

4. Include this object file in the external compiler project you use to create the DLL.

5. You must call InitCVIRTE and CloseCVIRTE in your DLLMain function. See the
InitCVIRTE and CloseCVIRTE section later in this chapter.

Chapter 3 Windows 95 and NT Compiler/Linker Issues

© National Instruments Corporation 3-11 LabWindows/CVI Programmer Reference

Resolving References from Modules Loaded at Run-Time

Note: This section does not apply if you are using LoadExternalModule to load only
DLLs (via DLL import libraries).

Unlike DLLs, object and static library files can contain unresolved references. If you call
LoadExternalModule to load an object or static library file at run time, the Utility Library
must resolve those references using function and variable symbols from the executable or from
previously loaded run-time modules. A table of symbols must be available in the executable.
When you link your program in LabWindows/CVI, a symbol table is automatically included.
This is true whether you are running your program in the LabWindows/CVI development
environment or as a standalone executable.

When you link your program in an external compiler, no such table is made available to the
Utility Library; LabWindows/CVI makes available two object files for this purpose.

• Include cvi\extlib\refsym.obj in your external compiler project if your run-time
modules reference any symbols in the User Interface, Formatting and I/O, RS-232, DDE,
TCP, or Utility Library.

• Include cvi\extlib\arefsym.obj in your external compiler project if your run-time
modules reference any symbols in the ANSI C standard library. (If you need to use this
object file and you are using Borland C/C++ to create your executable, you must choose
Static Linking for the Standard Libraries. In the IDE, you can do this in the New Target and
Target Expert dialog boxes.)

Resolving References to Non-LabWindows/CVI Symbols

If your run-time modules reference any other symbols from your executable, you must use
LabWindows/CVI to generate an object file containing a table of those symbols. Create an
include file containing complete declarations of all of the symbols your run-time modules
reference from the executable. The include file may contain nested #include statements and
may contain executable symbols that your run-time modules do not reference. If your run-time
module references any of the commonly used Windows SDK functions, you can use the
cvi\sdk\include\basicsdk.h file.

Execute the External Compiler Support command in the Build menu of the Project window. A
dialog box appears. Checkmark the Using Load External Module checkbox. The Other
Symbols checkbox should already be checkmarked. Enter the pathname of the include file in the
Header File control. Enter the pathname of the object file to be generated in the Object File
control. Click on the Create button to the right of the Object File control.

Include the object file in the external compiler project you use to create your executable. Also,
you must call InitCVIRTE at the beginning of your main or WinMain function. See the
InitCVIRTE and CloseCVIRTE section later in this chapter.

Windows 95 and NT Compiler/Linker Issues Chapter 3

LabWindows/CVI Programmer Reference 3-12 © National Instruments Corporation

Resolving Run-Time Module References to Symbols Not Exported From a DLL

Normally, the Utility Library LoadExternalModule function resolves run-time module
references using only symbols in your executable or previously loaded run-time modules. When
you load an object or static library file from a DLL, you may want to resolve references from that
module using non-static symbols contained in, but not exported by, the DLL. You can do this by
calling the LoadExternalModuleEx function. When you pass the DLL module handle to
LoadExternalModuleEx , the Utility Library searches the symbol table contained in the
DLL before searching the table contained in the executable. Refer to Chapter 8, Utility Library,
of the LabWindows/CVI Standard Libraries Reference Manual for detailed information on
LoadExternalModuleEx .

If you create your DLL in LabWindows/CVI, the table of symbols is included in the DLL
automatically. If you create your DLL using an external compiler, no such table is made
available to the Utility Library. Thus, when you are using an external compiler, you must include
in your DLL one or more object files containing the necessary symbol tables. You can do this
using the technique described in the preceding section, Resolving References to Non-
LabWindows/CVI Symbols. You must call InitCVIRTE and CloseCVIRTE in your
DLLMain function. See the InitCVIRTE and CloseCVIRTE section later in this chapter.

Run State Change Callbacks Are Not Available in External Compilers

When you use a compiled module in LabWindows/CVI, you can arrange for it to be notified of a
change in the execution status (start, stop, suspend, resume). This is done through a callback
function, which is always named __RunStateChangeCallback. This is described in detail
in the section Special Considerations When Using a Loadable Compiled Module, in Chapter 2,
Using Loadable Compiled Modules, of this manual.

You need the run state change callback capability in LabWindows/CVI for the following reason:
When you run a program in the LabWindows/CVI development environment, it is executed as
part of the LabWindows/CVI process. When your program terminates, the operating system does
not clean up as it does when a process terminates. LabWindows/CVI cleans up as much as it can,
but your compiled module may need to do more. Also, if the program is suspended for
debugging purposes, your compiled module may need to disable interrupts.

When you run an executable created in an external compiler, it is always executed as a separate
process, even if you are debugging it. Thus, the run state change callback facility is not needed
and does not work. When linking with an external compiler, having a function called
__RunStateChangeCallback in more than one object file causes a link error. If you need a
run state change callback in a compiled module that you intend to use both in LabWindows/CVI
and an external compiler, it is recommended that you put the callback function in a separate
source file and create a .lib file instead of an .obj file.

Chapter 3 Windows 95 and NT Compiler/Linker Issues

© National Instruments Corporation 3-13 LabWindows/CVI Programmer Reference

Calling InitCVIRTE and CloseCVIRTE

If you link an executable (or DLL) in an external compiler, you may need to call the
InitCVIRTE function at the beginning of your main or WinMain (or DLLMain) function.
The call is necessary if you have functions in your executable (or non-exported functions in your
DLL) that are needed to resolve callback references from .uir files or needed to resolve
external references in .obj or .lib files loaded using LoadExternalModule . See the
Resolving Callback References From .UIR Files and Resolving References from Modules Loaded
at Run-Time sections earlier in this chapter.

For an executable using main as the entry point, your code should include the following
segment.

#include <cvirte.h>
int main (argc, char *argv[])
{

if (InitCVIRTE(0, argv, 0) == 0)
return (-1); /* out of memory */

/* your other code */
}

For an executable using WinMain as the entry point, your code should include the following
segment.

#include <cvirte.h>
int __stdcall WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR lpszCmdLine, int nCmdShow){

if (InitCVIRTE(hInstance, 0, 0) == 0)
return (-1); /* out of memory */

/* your other code */
}

For a DLL, you also need to call CloseCVIRTE in DLLMain . The code should include the
following segment.

#include <cvirte.h>
int __stdcall DllMain (HINSTANCE hinstDLL, DWORD fdwReason, LPVOID pvReserved)
{

if (fdwReason == DLL_PROCESS_ATTACH)
{
if (InitCVIRTE (hinstDLL, 0, 0) == 0)

return 0; /* out of memory */
/* your other ATTACH code */
}

Windows 95 and NT Compiler/Linker Issues Chapter 3

LabWindows/CVI Programmer Reference 3-14 © National Instruments Corporation

else if (fdwReason == DLL_PROCESS_DETACH)
{
/* your other DETACH code */
CloseCVIRTE ();
}

 return 1;
}

Note: It is harmless, but unnecessary, to call these functions when you link your executable
in LabWindows/CVI for Windows 95 and NT.

Creating Object and Library Files in External Compilers for
Use in LabWindows/CVI
When you use an external compiler to create an object or library file for use in
LabWindows/CVI, you must use the include files in the cvi\include and
cvi\sdk\include directories. Be sure that these directories have priority over the default
paths for the compiler’s C library and SDK library include files.

When you use an external compiler to create an object or library file for use in
LabWindows/CVI, you must choose the compiler options carefully. For all compilers,
LabWindows/CVI is designed to work with the default options as much as possible. In some
cases, however, you need to choose options that override the defaults. Additionally, there may be
some defaults which you must not override.

Microsoft Visual C/C++

LabWindows/CVI is compatible with all of the defaults.

You should not use the following options to override the default settings:

/J (Unsigned Characters)
/Zp (Struct Member Alignment)
/Ge (Stack Probes)
/Gh (Profiling)
/Gs (Stack Probes)

Borland C/C++ command line compiler

LabWindows/CVI is compatible with all of the defaults.

You should not use the following options to override the default settings:

-a (Data Alignment)
-K (Unsigned Characters)
-u- (Turn Off Generation of Underscores)

Chapter 3 Windows 95 and NT Compiler/Linker Issues

© National Instruments Corporation 3-15 LabWindows/CVI Programmer Reference

-N (Test Stack Overflow)
-p (Pascal Calling Convention)
-pr (Register Calling Convention)
Correct Pentium FDIV Flaw

WATCOM C/C++

You must use the following options to override the default settings:

-ei (Force Enums to Type Int)
-bt=nt (target platform is Windows NT or Windows 95)
-mf (flat memory model)
-4s (80486 Stack-Based Calling)
-s (Disable Stack Depth Checking)
-j (Change Char Default to Signed)
-fpi87 (Generate In-Line 80x87 Code)

If your external object calls the function LoadExternalModule or
LoadExternalModuleEx , you must also add the following compiler option:

-d__NO_MATH_OPS

You should not use the following option to override the default settings:

-Zp (Structure Alignment)

Symantec C/C++

You must use the following options to override the default settings:

-mn (Windows 95/NT Memory Model)
-f (Generate In-Line 80x87 Code)

You should not use the following options to override the default settings:

-a (Struct Alignment)
-P (Use Pascal Calling Convention)
-s (Check Stack Overflow)

Note: Certain specialized options may generate symbol references that cause link errors in
LabWindows/CVI. If you encounter a link error on a symbol in an externally compiled
module and you do not recognize the symbol, try changing your external compiler
options.

Windows 95 and NT Compiler/Linker Issues Chapter 3

LabWindows/CVI Programmer Reference 3-16 © National Instruments Corporation

Creating Executables in LabWindows/CVI

You can create true 32-bit Windows executables in LabWindows/CVI for Windows 95 and NT.
In LabWindows/CVI for Windows 3.1, standalone programs are run using a special executable
file that contains the LabWindows/CVI run-time libraries. If you run more than one program at a
time, extra copies of this special executable are loaded into memory. Under Windows 95 and NT,
the LabWindows/CVI run-time libraries come in DLL form. The same DLLs are used by
standalone executables created in LabWindows/CVI and executables created in external
compilers. If more than one program is run at a time, only one copy of the DLL is loaded.

To create a standalone executable, you must first select Standalone Executable from the
submenu attached to the Target command in the Build menu of the Project window. When
Standalone Executable is checkmarked, the Create Standalone Executable command appears
below the Target command in the Build menu. The Create Standalone Executable command in
Windows 95 and NT is the same as in Windows 3.1, except that you can also specify version
information to be included in the executable in the form of a standard Windows version resource.

Creating DLLs in LabWindows/CVI

In LabWindows/CVI for Windows 95 and NT, you can create 32-bit DLLs. Along with each
DLL, LabWindows/CVI creates a DLL import library for your compatible compiler. You can
choose to create DLL import libraries compatible with all four compatible external compilers.

You need a separate project for each DLL you want to create. You must select Dynamic Link
Library from the submenu attached to the Target command in the Build menu of the Project
window. When Dynamic Link Library is checkmarked, the Create Dynamic Link Library
command appears below the Target command in the Build menu. Refer to Chapter 3, Project
Window, in the LabWindows/CVI User Manual, for detailed information on the Create Dynamic
Link Library command.

There is no provision for debugging DLLs you compile in LabWindows/CVI. You can debug
your project in LabWindows/CVI, before creating the DLL.

Customizing an Import Library

If you need to perform some special processing in your DLL import library, you can customize
it. Instead of generating a .lib file, you can generate a .c file containing source code. If you do
this, however, you can export only functions from the DLL, not variables.

To customize an import library, you must have an include file that contains the declarations of all
of the functions you want to access from the DLL. Load the include file into a Source window,
and execute the Generate DLL Import Source command in the Options menu.

Chapter 3 Windows 95 and NT Compiler/Linker Issues

© National Instruments Corporation 3-17 LabWindows/CVI Programmer Reference

After you have generated the glue source, you can modify it, including making calls to functions
in other source files. Create a new project containing the glue source file and any other files it
references. Select Static Library from the submenu attached to the Target command in the
Build menu of the Project window. Execute the Create Static Library command.

Note: This glue source code does not operate in the same way as a normal DLL import
library. When you link a normal DLL import library into an executable, the operating
system attempts to load the DLL as soon as the program starts. The glue source
generated by LabWindows/CVI is written so that the DLL is not loaded until the first
function call into it is made.

Preparing Source Code for Use in a DLL

When you create a DLL, you must address the following issues because they can affect your
source code and include file.

• The calling convention you use for the exported functions

• How you specify which DLL functions and variables are to be exported

• Marking symbols that are imported in the DLL include file you distribute

This section discusses how you can address these issues when you create your DLL in
LabWindows/CVI. If you create your DLL in an external compiler, the approach is very similar.
The external compilers, however, do not agree in all aspects. These differences are also discussed
in this chapter.

Some of the information in this section is very technical and complex. At the end of the section,
there are recommendations on the best approaches to these issues. These recommendations are
intended to make creating the DLL as simple as possible, and to make it easy to use the same
source code in LabWindows/CVI and the external compilers.

Calling Convention for Exported Functions

If you intend for your DLL to be used solely by C or C++ programs, you can use the cdecl (or
WATCOM stack-based) calling convention for your exported functions. If, however, you want
your DLL to be callable from environments such as Microsoft Visual Basic, you must declare
your exported functions with the _stdcall calling convention.

You should do this by explicitly defining the functions with the _stdcall keyword. This is
true whether or not you choose to make _stdcall the default calling convention for your
project. You must use the _stdcall keyword in the declarations in the include file you
distribute with the DLL.

The __stdcall keyword in not recognized on other platforms, such as UNIX or Windows 3.1.
If you are working with source code that might be used on other platforms, you should use a

Windows 95 and NT Compiler/Linker Issues Chapter 3

LabWindows/CVI Programmer Reference 3-18 © National Instruments Corporation

macro in place of __stdcall . The DLLSTDCALL macro is defined in the cvidef.h include
file for this purpose.

The following are examples of using the DLLSTDCALL macro.

int DLLSTDCALL MyIntFunc (void);
char * DLLSTDCALL MyStringFunc (void);

Note: The stdcall calling convention cannot be used on functions with a variable number
of arguments. Consequently, such functions cannot be used in Microsoft Visual Basic.

Exporting DLL Functions and Variables

When a program uses a DLL, it can access only the functions or variables that are exported by
the DLL. Only globally declared functions and variables can be exported. Functions and
variables declared as static cannot be exported.

If you create your DLL in LabWindows/CVI, there are two ways to indicate which functions and
variables to export: the include file method and the qualifier method.

Include File Method

You can use include files to identify symbols to export. The include files must contain the
declarations of the symbols you want to export. The include files may contain nested #include
statements, but the declarations in the nested include files are not exported. In the Create
Dynamic Link Library dialog box, you select from a list of all of the include files in the project.

The include file method does not work with other compilers. However, it is similar to the .def
method used by the other compilers.

Export Qualifier Method

You can mark each function and variable you want to export with the an export qualifier.
Currently, not all compilers recognize the same export qualifier names. The most commonly
used is __declspec(dllexport) . Some also recognize __export . LabWindows/CVI
recognizes both. It is recommended that you use the macro DLLEXPORT macro which is defined
in the cvidef.h include file. The following are examples of using the DLLEXPORT macro.

int DLLEXPORT DLLSTDCALL MyFunc (int parm) {}
int DLLEXPORT myVar = 0;

If the type of your variable or function requires an asterisk (*) in the syntax, put the qualifier
after the asterisk, as in the following example.

char * DLLEXPORT myVar = NULL;

Chapter 3 Windows 95 and NT Compiler/Linker Issues

© National Instruments Corporation 3-19 LabWindows/CVI Programmer Reference

Note: Borland C/C++ version 4.5x, requires that you place the qualifier before the asterisk.
In Borland C/C++ 5.0, you can place the qualifier on either side of the asterisk.

When LabWindows/CVI creates a DLL, it exports all symbols for which export qualifiers appear
in either the definition or the declaration. If you use an export qualifier on the definition and an
import qualifier on the declaration, LabWindows/CVI exports the symbol. The external
compilers differ widely in their behavior on this point. Some require that the declaration and
definition agree.

Note: If you have included in your DLL project an object or library file defining exported
symbols, LabWindows/CVI cannot correctly create import libraries for each of the
compilers it works with. This problem does not arise if you are using only source code
files in your DLL project.

Marking Imported Symbols in Include File Distributed with DLL

Generally, you should distribute an include file with your DLL. The include file should declare
all of the exported symbols. If any of these symbols are variables, you must mark them with an
import qualifier. Import qualifiers are required on variable declarations so that the correct code
can be generated for accessing the variables.

Import qualifiers can also be used on function declarations, but they are not required. When you
use an import qualifier on a function declaration, external compilers can generate slightly more
efficient code for calling the function.

Using import qualifiers in the include file you distribute with your DLL can cause problems if
you use the same include file in the DLL source code.

• If you mark variable declarations in the include file with import qualifiers and you use the
include file in a source file other than the one in which the variable is defined,
LabWindows/CVI (and any other external compiler) treats the variable as if it were imported
from another DLL and generates incorrect code as a result.

• If you use export qualifiers in the definition of symbols and the include file contains import
qualifiers on the same symbols, some external compilers report an error.

You can solve these problems in several different ways.

• You can avoid exporting variables from DLLs, and thereby eliminate the need to use import
qualifiers. For each variable you want to export, you can create functions to get and set its
value or a function to return a pointer to the variable. You do not need to use import
qualifiers for functions. This is the simplest approach. (Unfortunately, it does not work if you
use an export qualifier in a function definition and you are creating the DLL with an external
compiler that requires the declaration and definition to agree.)

• You can create a separate include file for distribution with the DLL.

Windows 95 and NT Compiler/Linker Issues Chapter 3

LabWindows/CVI Programmer Reference 3-20 © National Instruments Corporation

• You can use a special macro that resolves to either an import or export qualifier depending on
a conditional compilation flag. In LabWindows/CVI you can set the flag in your DLL project
by using the Compiler Defines command in the Options menu of the Project window.

Recommendations

To make creating a DLL as simple as possible, adhere to the following recommendations.

• Use the __stdcall keyword (or DLLSTDCALL or a similar macro) in the declaration and
definition of all exported functions. Do not export functions with a variable number of
arguments.

• Identify the exported symbols using the include file method. Do not use export qualifiers. If
you are using an external compiler, use the .def file method.

• Do not export variables from the DLL. For each variable you want to export, you can create
functions to get and set its value or a function to return a pointer to the variable. Do not use
import qualifiers in the include file.

If you follow these recommendations, you reap the following benefits.

• You can distribute with your DLL the same include file that you include in the source files
used to make the DLL. This is especially useful when you create DLLs from instrument
drivers.

• You can use the same source code to create the DLL in LabWindows/CVI and any of the
compatible external compilers.

• You can use your DLL in Microsoft Visual Basic or other non-C environments.

Automatic Inclusion of Type Library Resource for Visual Basic

The Create Dynamic Link Library command gives you the option to automatically create a
Type Library resource and include it in the DLL. When you use this option, Visual Basic users
can call the DLL without having to use a header file containing Declare statements for the
DLL functions. The command requires that you have a function panel file for your DLL.

If your function panel file contains help text, you can generate a Windows help file from it using
the Generate Windows Help command in the Options menu of the Function Tree Editor . The
Create Dynamic Link Library command optionally includes pointers into the Window help file
in the Type Library. These pointers let Visual Basic users access the help information from the
Type Library Browser.

Chapter 3 Windows 95 and NT Compiler/Linker Issues

© National Instruments Corporation 3-21 LabWindows/CVI Programmer Reference

Visual Basic has a more restricted set of types than C. Also, the Create Dynamic Link Library
command imposes certain requirements on the declaration of the DLL API. Use the following
guidelines to ensure that you DLL API can be used in Visual Basic:

• Always use typedefs for structure parameters and union parameters.

• Do not use enum parameters.

• Do not use structures that require forward references or that contain pointers.

• Do not use pointer types except for reference parameters.

Creating Static Libraries in LabWindows/CVI

You can create static library (.lib) files in LabWindows/CVI for Windows 95 and NT. Static
libraries are libraries in the traditional sensea collection of object filesas opposed to a
dynamic link library or an import library. You can use just one project to create static library files
that will work with all four compatible external compilers, but only if you include no object or
library files in the project.

You need a separate project for each static library you want to create. You must select Static
Library from the submenu attached to the Target command in the Build menu of the Project
window. When Static Library is checkmarked, the Create Static Library command appears
below the Target command in the Build menu. Refer to Chapter 4, Source, Interactive
Execution and Standard Input/Output Windows, of the LabWindows/CVI User Manual for
detailed information on the Create Static Library command.

Note: If you include a .lib file in a static library project, all object modules from the .lib
are included in the static library. When an executable or DLL is created, only the
modules needed from the .lib file are used.

Note: Do not set the default calling convention to stdlib if you want to create a static
library for all compatible external compilers.

Creating Object Files in LabWindows/CVI

You can create an object file in LabWindows/CVI by opening a source (.c) file and selecting the
Create Object File command in the Options menu of the Source window.

In LabWindows/CVI for Windows 95 and NT, you can choose to create only an object file for
the currently selected compiler or to create object files for all four compatible external compilers.

Note: Do not set the default calling convention to stdlib if you want to create a static
object for all compatible external compilers.

Windows 95 and NT Compiler/Linker Issues Chapter 3

LabWindows/CVI Programmer Reference 3-22 © National Instruments Corporation

Calling Windows SDK Functions in LabWindows/CVI

You can call Windows SDK Functions in LabWindows/CVI for Windows 95 and NT.

To view help for the SDK functions, select the Windows SDK command in the Help menu of
any LabWindows/CVI window.

Windows SDK Include Files

You must include the SDK include files before the LabWindows/CVI include files. In this way,
you avoid problems caused by function name and typedef conflicts between the Windows SDK
and the LabWindows/CVI libraries. The LabWindows/CVI include files contain special macros
and conditional compilation to adjust for declarations in the SDK include files. Thus, the SDK
include files must be processed first, followed by the LabWindows/CVI include files.

When you are compiling in LabWindows/CVI or when you are using an external compiler to
compile your source files for linking in LabWindows/CVI, use LabWindows/CVI’s SDK include
files. LabWindows/CVI’s SDK include files are in the cvi\sdk\include directory. The
LabWindows/CVI compiler automatically searches the cvi\sdk\include directory. You do
not need to add it to your include paths.

When you use an external compiler to compile and link your source files, you should use the
SDK include files that come with the external compiler. If you use an external compiler to
compile your source files for linking in LabWindows/CVI, use LabWindows/CVI’s SDK include
files. For more information, see the Setting Up Include Paths for LabWindows/CVI, ANSI C, and
SDK Libraries section later in this chapter.

Although there are a very large number of SDK include files, normally you need to include only
windows.h because it includes many (but not all) of the other include files. The inclusion of
windows.h along with its subsidiary include files significantly increases compilation time and
memory usage. WIN32_LEAN_AND_MEAN is a macro from Microsoft which speeds compiling
by eliminating the less commonly used portions of windows.h and its subsidiary include files.
By default, LabWindows/CVI adds /DWIN32_LEAN_AND_MEAN as a compile-time definition
when you create a new project. You can alter this setting by using the Compiler Defines
command in the Options menu of the Project window.

Using Windows SDK Functions for User Interface Capabilities

The LabWindows/CVI User Interface Library is built on top of the Windows SDK. It is not
designed to be used in programs that attempt to build other user interface objects at the SDK
level. While there are no specific restrictions on using SDK functions in LabWindows/CVI, it is
recommended that you base your user interface either entirely on the LabWindows/CVI User
Interface Library or entirely on another user interface development system.

Chapter 3 Windows 95 and NT Compiler/Linker Issues

© National Instruments Corporation 3-23 LabWindows/CVI Programmer Reference

Using Windows SDK Functions to Create Multiple Threads

Although you can use the Windows SDK Functions to create multiple threads in a
LabWindows/CVI program, the LabWindows/CVI development environment is not designed to
handle multiple threads. For instance, if your main program terminates without destroying the
threads, they are not terminated. Also, the LabWindows/CVI libraries are not multithread safe
when called from a program linked in LabWindows/CVI.

(Some of the libraries are multithread safe in programs linked with an external compiler. See the
Creating Executables and DLLs in External Compilers for Use with the LabWindows/CVI
Libraries earlier in this chapter.)

Automatic Loading of SDK Import Libraries

All of the SDK functions are implemented in DLLs. Each external compiler comes with a
number of DLL import libraries for the SDK functions. Most of the commonly used SDK
functions programs are in the following three import libraries.

kernel32.lib
gdi32.lib
user32.lib

LabWindows/CVI for Windows 95 and NT automatically loads these three libraries at start up
and searches them to resolve references at link time. Thus, you do not need to include these
libraries in your project.

If the LabWindows/CVI linker reports SDK functions as unresolved references, you need to add
import libraries to your project. Refer to the cvi\sdk\sdkfuncs.txt file for associations of
SDK import libraries to SDK functions. The import libraries are in the cvi\sdk\lib
directory.

Setting Up Include Paths for LabWindows/CVI, ANSI C,
and SDK Libraries

The rules for using SDK include files are not the same as the rules for using ANSI C standard
library include files, which in turn are different than the rules for using the LabWindows/CVI
library include files. (See the Include Files for the ANSI C Library and the LabWindows/CVI
Libraries and Windows SDK Include Files sections earlier in this chapter.) Depending on where
you are compiling and linking, you may have to set up your include paths very carefully. Each of
the cases is discussed here.

Windows 95 and NT Compiler/Linker Issues Chapter 3

LabWindows/CVI Programmer Reference 3-24 © National Instruments Corporation

Compiling in LabWindows/CVI for Linking in LabWindows/CVI

Use LabWindows/CVI’s SDK and ANSI C include files. This happens automatically. You do not
need to set up any special include paths; the include paths are set up automatically.

Compiling in LabWindows/CVI for Linking in an External Compiler

Use LabWindows/CVI’s SDK include files and the external compiler’s ANSI C include files.
Using the Include Paths command in the Options menu of the Project window, add the
following as explicit include paths at the beginning of the project-specific list.

cvi\include
cvi\sdk\include
directory containing the external compiler’s ANSI C include paths

Compiling in an External Compiler for Linking in an External Compiler

Use the external compiler’s SDK and ANSI C include file. This happens automatically. Specify
the following directories as include paths in the external compiler for the LabWindows/CVI
library include files.

cvi\include

Compiling in an External Compiler for Linking in LabWindows/CVI

Use LabWindows/CVI’s SDK and ANSI C include files. Specify the following directories as
include paths in the external compiler.

cvi\include
cvi\include\ansi
cvi\sdk\include

Handling Hardware Interrupts under Windows 95 and NT

In Windows 3.1, you can handle hardware interrupts in a DLL. In Windows 95, you must handle
hardware interrupts in a VxD. In Windows NT, you must handle hardware interrupts in a kernel
mode driver. You cannot create VxDs and kernel mode drivers in LabWindows/CVI. Instead,
you must create them in Microsoft Visual C/C++, and you also need utilities available in the
Microsoft Device Driver Developer Kit (DDK).

Under Windows 3.1, it is extremely difficult to call into LabWindows/CVI source code at
interrupt time. Making such a call is easier under Windows 95 and NT. Under Windows 95 and
NT, you can arrange for a function in your LabWindows/CVI source code to be called after your
VxD (or kernel mode driver) interrupt service routine exits. You do this by creating a thread for

Chapter 3 Windows 95 and NT Compiler/Linker Issues

© National Instruments Corporation 3-25 LabWindows/CVI Programmer Reference

your interrupt callback function. The callback function executes a loop which blocks its thread
until it is signaled by the interrupt service routine. Each time the interrupt service routine
executes, it unblocks the callback thread. The callback thread then performs its processing and
blocks again.

LabWindows/CVI includes source code template files for a VxD and a kernel mode driver. It
also includes a sample main program to show you how to read and write registers on a board.
There is one set of files for Windows 95 and another for Windows NT.

The files are located in cvi\vxd\win95 and cvi\vxi\winnt . Some basic information is
contained in the file template.doc in each directory.

© National Instruments Corporation 4-1 LabWindows/CVI Programmer Reference

Chapter 4
Windows 3.1 Compiler/Linker Issues

This chapter describes the different kinds of compiled modules available under
LabWindows/CVI for Windows 3.1 and includes programming guidelines for modules generated
by external compilers.

Using Modules Compiled by LabWindows/CVI

You can generate a compiled .obj or .o module from a source file within LabWindows/CVI
using the Create Object File command in the Options menu of a Source window. The
compiled module then can be used in any of the methods described in section About Loadable
Compiled Modules in Chapter 2, Using Loadable Compiled Modules of this manual.

Using 32-Bit Watcom Compiled Modules Under
Windows 3.1
You must adhere to the following rules for a 32-bit Watcom compiled module (.obj or .lib
file).

• You can call LabWindows/CVI library functions.

• If you make a call to the ANSI C Standard Library, the LabWindows/CVI header files must
be included instead of the Watcom header files.

• You cannot call Watcom C library functions outside the scope of the ANSI C Standard
Library.

• You can call open , close , read , write , lseek , or eof , but you must include
lowlvlio.h from LabWindows/CVI.

• You cannot call functions in the Windows Software Developer Kit (SDK), install interrupts,
perform DMA, or access hardware directly. These tasks must be done with a Dynamic Link
Library (DLL). The exception to this is that you can use the inp and outp functions.

• You cannot define a function as PASCAL, pascal , or _pascal if you intend to call it
from source code in LabWindows/CVI. Also, you cannot use any non-ANSI-C-standard
keywords such as far , near , or huge in the declaration of functions to be called from
LabWindows/CVI source code.

Windows 3.1 Compiler/Linker Issues Chapter 4

LabWindows/CVI Programmer Reference 4-2 © National Instruments Corporation

• If your Watcom-compiled module performs floating point operations, you must use Watcom
Version 9.5 or later.

• Use the following options when you compile with Watcom 10.x IDE.

– Set the Project Target environment to 32-bit Windows 3.x, and set the Image Type to
Library[.lib]

– Turn on Disable stack depth checking [-s].

– Turn on Change char default to signed [-j].

– Add the following to the Other Options: -zw -d_NI_mswin16_

– Turn on Generate as needed [-of] for Stack Frames.

– Turn on No debugging information.

– Turn on In-line with coprocessor [fpi87] for Floating Point Model.

– Turn on Compiler default for the Memory Model.

– Turn on 80486 Stack based calling [-4s] for the Target Processor.

• Use the following compiler flags when using wcc386 or wcc386p .

– -zw -s -4s -j -fpi87 -d0 -of -d_NI_mswin16_

– You may use optimization flags in addition to the f , and you may use other flags, such as
-w n, which do not effect the generation of object code.

Using 32-Bit Borland or Symantec Compiled Modules Under
Windows 3.1

In this section, CVI refers to both LabWindows/CVI and Watcom modules, while Borland
applies to both Borland and Symantec modules.

The following restrictions apply to Borland object modules:

• Borland packs bit fields in structures differently than CVI, so structures with bit fields cannot
be shared between Borland and CVI.

• Borland returns structures, floats, and doubles differently than CVI. Therefore, functions that
return these types cannot be called from CVI if they are defined in Borland, or vice-versa.
The exceptions are the ANSI C library functions that return doubles, which may be called
from within Borland compiled modules.

Chapter 4 Windows 3.1 Compiler/Linker Issues

© National Instruments Corporation 4-3 LabWindows/CVI Programmer Reference

Note: This rule applies only to return values. You may use structures, float s and
double s as output parameters without limitation.

• ANSI C library functions div and ldiv return structures, and hence cannot be called from
Borland compiled modules.

• The type long double is the same as double in CVI, while in Borland it is 10 bytes
long, so objects of this type cannot be shared between Borland and CVI modules. This
affects the "%Le" , "%Lf" , "%Lg" format specifiers of printf , sprintf , fprintf ,
scanf , sscanf , fscanf , and others.

• Because structures with bit fields cannot be shared between Borland and CVI, the macros in
stdio.h (getc, putc, fgetc, fputc) cannot be used in Borland objects.

• wchar_t is defined as a char in CVI, whereas it is defined as a short in Borland, so
ANSI C library functions that return wchar_t or take wchar_t parameters will not work.

Use the following options when you compile with Borland C 4.x:

• Set the target to be a Win32 application.

• Define _NI _mswin16 _

• Set the include directories to point to cvi\include before other include directories.

• Turn off Allocate enums as ints.

• Turn off Fast floating point.

• Use the C calling convention.

If you are using a file with a .c extension, Borland C++ 4.x compiles it as a C source file. If
your file has a .cpp extension, it will be compiled as C++ source file; you need to use extern
"C" for any functions or variables you want to access from a C file.

Use the following options when compiling with Symantec C++ 6.0:

• Set the target to be a Win32s executable.

• Define _NI _mswin16 _

• Set the include directories to point to cvi\include before any other include directories.

• Set Structure alignment to byte.

• Turn off Use Pascal Calling Convention.

Windows 3.1 Compiler/Linker Issues Chapter 4

LabWindows/CVI Programmer Reference 4-4 © National Instruments Corporation

16-Bit Windows DLLs

You can call functions in a 16-bit DLL from source code or from a 32-bit compiled module.
You can compile your 16-bit DLL in any language using any compiler that generates DLLs. If
you want to program with DMA or interrupts, or access the Windows API, you must use a
Windows DLL.

You must observe certain rules and restrictions in a DLL you want to use with
LabWindows/CVI. If you experience problems using a DLL in LabWindows/CVI, you may
have to contact the developer of the DLL to obtain modifications.

Because LabWindows/CVI is a 32-bit application, special glue code is required to communicate
with a 16-bit DLL. For some DLLs, LabWindows/CVI can automatically generate this glue code
from the include file when loading the DLL. For other DLLs, you need to include and possibly
modify the glue code in a Watcom compiled module that must be loaded with the DLL.

The normal way of communicating with a DLL is by calling functions in the DLL. However,
there are cases where you must use other communication methods. The most typical case is that
of an interrupt service routine in a DLL that must notify the application that the interrupt
occurred. This must be done through a callback function. LabWindows/CVI can recognize
messages posted by a DLL through the Windows Application Programming Interface (API)
function PostMessage and initiate a callback function.

Helpful LabWindows/CVI Options for Working with DLLs

LabWindows/CVI provides two options that can be helpful when working with DLLs. Both can
be found in the Run Options menu of the Project window.

• Enable the Check Disk Dates Before Each Run option when you are iteratively modifying a
DLL or DLL glue code file and running a LabWindows/CVI test program that calls into the
DLL. By enabling the Check Disk Dates Before Each Run option, you ensure that the most
recent version of the DLL and DLL glue code is linked into your program. You can leave this
option enabled at all times. The only penalty is a small delay each time you build or run the
project.

• By default, LabWindows/CVI does not unload and reload DLLs between each execution of
your program. This eliminates the delay in reloading the DLLs before each run. It allows the
DLLs to retain state information between each run. DLLs should be written so that they can
remain in memory across multiple program executions. Nevertheless, if you are using a DLL
that does not work correctly across multiple program executions, enable the Reload DLLs
Before Each Run option.

Chapter 4 Windows 3.1 Compiler/Linker Issues

© National Instruments Corporation 4-5 LabWindows/CVI Programmer Reference

DLL Rules and Restrictions

To call into a 16-bit DLL from LabWindows/CVI 32-bit code, you must observe the following
rules and restrictions for DLL functions.

• In the DLL header file, change all references to int into references to short .

• In the DLL header file, change all references to unsigned or unsigned int to
unsigned short .

• You can declare the functions in the DLL as PASCAL or as CDECL.

• You cannot use variable argument functions.

• You can use the argument types char , unsigned char , int , unsigned int , short ,
unsigned short , long , unsigned long , float , and double , as well as pointers
to any type, and arrays of any type. Typedefs for these types are also allowed.

• You can use the return types void , char , unsigned char , int , unsigned int ,
short , unsigned short , long , and unsigned long , as well as pointers to any
type. Typedefs for these types are also allowed.

• You can use the return types float and double only if the DLL is created with a Microsoft C
compiler, and the functions returning floats or double are declared with the cdecl calling
convention. You do not have to modify the glue code generated for functions that return float
or double values.

• In the DLL header file, enum sizes need to be consistent between LabWindows/CVI and the
compiler for the DLL.

typedef enum {
No_Error,
Device_Busy,
Device_Not_Found

} ErrorType;

The size of ErrorType is 2 bytes in Visual C++, whereas it is 1 byte in LabWindows/CVI.
To force LabWindows/CVI to treat ErrorType as 2 bytes, you can add another enum value
explicitly initialized to a 2-byte value, such as the following.

ErrorType_Dummy = 32767

• If the DLL you are using performs DMA on a buffer you pass to it, you may experience a
problem. The DLL may attempt to lock the buffer in memory by calling the Windows SDK
function GlobalPageLock . GlobalPageLock fails on buffers allocated with the
Watcom malloc function used by LabWindows/CVI in 32-bit mode.

Windows 3.1 Compiler/Linker Issues Chapter 4

LabWindows/CVI Programmer Reference 4-6 © National Instruments Corporation

Write the DLL so that if GlobalPageLock fails, the DLL attempts to lock the buffer with
the following code:

int DPMILock (void *buffer, unsigned long size)
{

DWORD base;
unsigned sel, offset;
union _REGS regs;
sel = SELECTOROF(buffer);
offset = OFFSETOF(buffer);
base = GetSelectorBase(sel);
base = base+offset;

regs.x.ax = 0x600; /*DPMI lock memory function */
regs.x.bx = HIWORD(base);
regs.x.cx = LOWORD(base);
regs.x.di = LOWORD(size);
regs.x.si = HIWORD(size);
int86(0x31, ®s, ®s);
return regs.x.cflag;

}

After the DMA is complete, you should unlock the buffer. You can unlock the buffer using
the DPMILock function, if you set regs.x.ax to 0x601 , instead of 0x600 .

• If you compile the DLL with the /FPi or /FPc switches or with no /FP switches (/FPi is
the default), the DLL uses the WIN87EM.DLL floating point emulator. LabWindows/CVI
does not use WIN87EM.DLL. If the DLL uses WIN87EM.DLL, use the following strategy
in the DLL to prevent conflicts.

1. Structure the code so that all functions performing any floating-point math have known
entry and exit points. Ideally, specify a particular set of exported entry points as the only
ways into the floating-point code.

2. Call the Windows SDK function FPInit in each of these entry points. Store the
previous signal handler in a function pointer.

3. If the DLL has its own exception handler, call signal to register the DLL's own signal
handler.

4. Perform the floating-point math.

5. Upon exiting through one of the well-defined DLL exit points, call the Windows SDK
function FPTerm to restore the previous exception handler and terminate the DLL's use
of WIN87EM.DLL.

typedef void (*LPFNSIGNALPROC) (int, int);

/* prototypes for functions in WIN87EM.d11 */
LPFNSIGNALPROC PASCAL_FPInit (void);
VOID PASCAL_FPTerm (LPFNSIGNALPROC);

Chapter 4 Windows 3.1 Compiler/Linker Issues

© National Instruments Corporation 4-7 LabWindows/CVI Programmer Reference

void DllFunction (void)
{

LPFNSIGNALPROC OldFPHandler;

/* save the floating point state, and setup the floating point */
/* exception handler for this DLL. */
OldFPHandler = _FPInit ();
signal (SIGFPE, DLLsFPEHandler); /* optional */
.
.
.
/* perform the computations */
.
.
.
/* restore the floating point state */
_FPTerm (OldFPHandler);

}

Note: If you are using Microsoft C to build the DLL, you may get a linker error for an
undefined symbol _acrtused2 . Include the following dummy function in your DLL
to fix this error.

void _acrtused2 (void)
{
}

This error occurs only in Microsoft C versions 7.00 and above. Also, when linking the
DLL, specify WIN87EM.LIB as the first library to be linked.

DLL Glue Code

Because LabWindows/CVI is a 32-bit application, it does not use 16-bit import libraries or
import statements in module definition files. Instead, LabWindows/CVI uses 32-bit DLL glue
code. In some cases, it is sufficient to use glue code that is automatically generated by
LabWindows/CVI when the DLL is loaded. However, you cannot use this method in the
following cases.

• The DLL requires special interface functions compiled outside of the DLL as a support
module (.obj or .lib).

• You expect to pass arrays bigger than 64 K to functions in the DLL.

• The DLL uses a pointer passed to a function in the DLL after the function returns. For
example, you pass an array to a function which starts an asynchronous I/O operation. The
function returns immediately, but the DLL continues to operate on the array.

• You want to pass a function pointer to the DLL so that the DLL will call the function later.
For example, the DLL makes a direct callback into 32-bit code.

Windows 3.1 Compiler/Linker Issues Chapter 4

LabWindows/CVI Programmer Reference 4-8 © National Instruments Corporation

• You want to pass to the DLL a pointer that points to other pointers. Two examples of
pointers that point to other pointers are, an array of pointers and a structure pointer with
pointer members.

• The DLL returns pointers as return values or through reference parameters.

• The DLL exports functions by ordinal value only.

If your DLL falls into any of these categories, see the DLLs That Cannot Use Glue Code
Generated at Load Time section of this chapter for details on how to proceed. Otherwise, see the
DLLs That Can Use Glue Code Generated at Load Time section, also in this chapter.

DLLs That Can Use Glue Code Generated at Load Time

If your DLL can use glue code generated at load time, LabWindows/CVI automatically generates
the glue code based on the contents of the .h file associated with the DLL when it is loaded.

Any functions that are declared as PASCAL, pascal , or _pascal in the DLL should be
declared as PASCAL in the .h file. (LabWindows/CVI ignores the PASCAL keyword except
when generating the glue code.)

Only use standard ANSI C keywords in the .h file. (The keyword PASCAL is the only
exception to this rule.) For example, do not use far , near , or huge .

Note: You may create an object module that contains the glue code. If you do so,
LabWindows/CVI can load the DLL faster because it does not need to regenerate and
recompile the glue code. To create the object module, load the .h file into a source
window and select Options » Generate DLL Glue Object. If the DLL pathname is
listed in the project, replace it with the object module file. If the DLL is not listed in the
project, but is associated with a .fp file, make sure the object module is in the same
directory as the .fp file.

DLLs That Cannot Use Glue Code Generated at Load Time

If your DLL cannot use glue code generated at load time, you must generate a glue code source
file from the DLL include file using the Generate DLL Glue Source command from the
Options menu of a Source window. You must then compile the glue code using the Watcom
compiler to create a .obj or .lib file to be loaded with the DLL. If you also have interface
functions that must exist outside the DLL, these must be combined with the glue code to form
the .obj or .lib file.

Loading a DLL That Cannot Use Glue Code Generated at Load Time

The 32-bit Watcom compiled .obj or .lib file that is associated with the DLL is loaded first.
For instance, if you want to include x.dll and x.obj in the project, add x.obj to the Project.
Do not add x.dll to the project. The .obj or .lib file causes LabWindows/CVI to load the
.dll .

Chapter 4 Windows 3.1 Compiler/Linker Issues

© National Instruments Corporation 4-9 LabWindows/CVI Programmer Reference

The .obj or .lib file must contain the glue code for the DLL. It is the presence of the glue
code that indicates to LabWindows/CVI that there is a .dll associated with the .obj or .lib
file.

When LabWindows/CVI loads the .obj or .lib file and finds that it contains glue code, it first
looks for the .dll in the same directory as the .obj for .lib file. If it cannot find the .dll ,
LabWindows/CVI looks for it as described in the documentation for the Windows SDK
LoadLibrary function.

Alternatively, you can create a .pth file in the same directory as the .obj or .lib file with
the same base name. LabWindows/CVI passes contents of the first line in the .pth file to the
Windows SDK LoadLibrary function.

Rules for the DLL Include File Used to Generate Glue Code

You can generate the DLL glue source file by opening the .h file for the DLL in a Source
window of LabWindows/CVI and selecting Generate DLL Glue Source from the Options
menu. This command prompts you for the name of a .h file. It puts the glue code in a .c file
with the same path and base name as the .h file. This .c file must be modified as described in
this section and compiled using the Watcom compiler. See the Using 32-Bit Watcom Compiled
Modules under Windows 3.1 section of this chapter for information on using the Watcom
compiler with LabWindows/CVI.

If any of the functions in the DLL are declared as PASCAL, pascal , or _pascal , they must
be declared as PASCAL in the .h file used to generate the glue code. LabWindows/CVI ignores
the PASCAL keyword except for the purposes of generating the glue code. The stub function in
the glue code is not declared as PASCAL. If you include this .h file in the glue code, the
Watcom compiler flags as an error the inconsistency between the declaration of the function in
the .h file and the definition of the stub function. If you include it in other modules compiled
under Watcom, calls to the function would be compiled incorrectly as if the function were
PASCAL. You have two options.

• Have two separate .h files, one which includes the PASCAL keyword and one which does
not. Use the one that does include the PASCAL keyword to generate the glue code only.

• Use conditional compilation so that Watcom ignores the PASCAL macro when compiling.

Only use standard ANSI C keywords in the .h file. (The keyword PASCAL is the only
exception to this rule.) For example, do not use far , near , or huge .

If the DLL Requires a Support Module Outside of the DLL

Support modules contain special interface functions used by the DLL that exist outside of the
DLL. If you are unsure whether the DLL requires a support module, try to build a project in
LabWindows/CVI with the DLL in the project list. If there are link errors in the form of
unresolved references, then the DLL requires special interface functions. Get the source code for
the interface functions, add it to the glue code, and compile using the Watcom compiler.

Windows 3.1 Compiler/Linker Issues Chapter 4

LabWindows/CVI Programmer Reference 4-10 © National Instruments Corporation

If the DLL is Passed Arrays Bigger Than 64 K

If you pass the DLL any arrays bigger than 64 K, you must modify the glue code source file. For
example, suppose you have a function in the DLL with the following prototype.

long WriteRealArray (double realArray[], long numElems);

In the glue code generated by LabWindows/CVI, there would be a declaration of
WriteRealArray like that shown in the following example.

long WriteRealArray (double realArray[], long numElems)
{

long retval;
unsigned short cw387;

cw387 = Get387CW();
retval = (long) InvokeIndirectFunction(__static_WriteRealArray, realArray,

numElems);
Set387CW (cw387);
return retval;

}

Note: The lines of code referencing cw387 are needed only if the DLL function performs
floating point operations. They are innocuous and execute quickly, so CVI adds them
to the glue code automatically. If the DLL function does not perform floating point
operations, you can remove these lines.

If realArray can be greater than 64 K, you must modify the interface routine as shown.

long WriteRealArray (double realArray[], long numElems)
{

long retval;
unsigned short cw387;
DWORD size;
DWORD alias;

size = numElems * sizeof(double);
if (Alloc16BitAlias (realArray, size, &alias) <0)

return < error code >;
cw387 = Get387CW();
retval = (long) InvokeIndirectFunction(__static_WriteRealArray, alias,

numElems);
Set387CW (cw387);
Free16BitAlias (alias, size);
return retval;

}

You must also modify the call to GetIndirectFunctionHandle for WriteRealArray
as shown in the following code.
if (!(__static_WriteRealArray = GetIndirectFunctionHandle (fp, INDIR_PTR,

INDIR_WORD,
INDIR_ENDLIST)))

by changing INDIR_PTR to INDIR_DWORD.

Chapter 4 Windows 3.1 Compiler/Linker Issues

© National Instruments Corporation 4-11 LabWindows/CVI Programmer Reference

If the DLL Retains a Buffer After the Function Returns (an Asynchronous Function)

If the DLL retains a buffer after the function returns, you must modify the glue code source file.
Suppose there is a function called WriteRealArrayAsync just like WriteRealArray ,
except that it returned before it completed the writing of the real array, and a function called
ClearAsyncWrite was used to clean up the asynchronous I/O. The glue code interface
functions for WriteRealArrayAsync and ClearAsyncWrite should be modified to
resemble the following example.

static DWORD gAsyncWriteAlias, gAsyncWriteSize;

long WriteRealArrayAsync (double realArray[], long numElems)
{

long retval;
unsigned short cw387;
DWORD size;
DWORD alias;

size = numElems * sizeof(double);
if (Alloc16BitAlias (realArray, size, &alias) < 0)

return < error code >;
cw387 = Get387CW();
retval = (long) InvokeIndirectFunction(__static_WriteRealArrayAsync, alias,

numElems);
Set387CW (cw387);
if (IsError (retval)) /* replace with macro to check if retval is error */

Free16BitAlias (alias, size);
else {

gAsyncWriteAlias = alias;
gAsyncWriteSize = size;

}
return retval;

}

long ClearAsyncWrite (void)
{

/* because this does no floating point, you can remove the cw387 code */
long retval;

retval = (long) InvokeIndirectFunction(__static_ClearAsyncWrite);
if (!IsError (retval)) /* replace with macro to check if retval is error */

if (gAsyncWriteAlias != 0) {
Free16BitAlias (gAsyncWriteAlias, gAsyncWriteSize);
gAsyncWriteAlias = 0;
gAsyncWriteSize = 0;

}
return retval;

}

You can terminate LabWindows/CVI programs in the middle of execution and then re-run them.
When you terminate the program, you should also terminate the asynchronous I/O. You can
arrange to be notified of changes in the run state by including a function with the name

Windows 3.1 Compiler/Linker Issues Chapter 4

LabWindows/CVI Programmer Reference 4-12 © National Instruments Corporation

RunStateChangeCallback in the .obj or .lib file associated with the DLL. You can
add this function to the glue code file. See the Special Considerations when Using a Loadable
Compiled Module section of Chapter 2, Using Loadable Compiled Modules of this manual for a
complete description of the run state change notification. In the example we have been
discussing, you should add the following code.

#include "libsupp.h"
void __RunStateChangeCallback (int newState)
{

if (newState == kRunState_Stop)
ClearAsyncWrite ();

}

If the DLL Calls Directly Back Into 32-Bit Code

If the DLL calls directly back into 32-bit code, you must modify the glue code source file. You
can call functions defined in 32-bit source code directly from a DLL. Although this method is
not as straightforward as Windows messaging, described in the Recognizing Windows Messages
Passed from a DLL section of this chapter, it is not subject to the latencies of Window
messaging.

Note: If you need direct callbacks to occur at interrupt time because the latency of Windows
messaging is interfering with your application, contact National Instruments for
assistance.

You cannot pass pointers to 32-bit functions directly into 16-bit DLLs. The Windows SDK
interface for this is very complex. Generate DLL Glue Code does not generate this code for
you. You must write your own glue code for passing function pointers to and from a DLL, and
add it to the file generated by Generate DLL Glue Code.

The following example illustrates the glue code necessary if a DLL contains the following
functions:

long (FAR*savedCallbackPtr) (long);
long FAR InstallCallback(long (FAR*callbackPtr) (long))
{

savedCallbackPtr = callbackPtr;
}
long InvokeCallback(long data)
{

return (*savedCallbackPtr)(data);
}

The following code shows the functions and data added or changed in the glue code generated
from the header file for the DLL:

Note: Because a callback must be declared far , and LabWindows/CVI cannot compile far
functions, you must declare a far function in the glue code and pass it to the DLL.
This far function calls the actual user function.

Chapter 4 Windows 3.1 Compiler/Linker Issues

© National Instruments Corporation 4-13 LabWindows/CVI Programmer Reference

#undef MakeProcInstance /* Use version that does not convert pointer. */
#undef FreeProcInstance /* Use version that does not convert pointer. */

typedef struct { /* Holds resources needed to register the callback. */
int UserDefinedProcHandle;
CALLBACKPTR proc16;
FARPROC proc16Instance;

} CallbackDataType;
static CallbackDataType CallbackData;

static long (*UsersCallback)(long);

/* Define a 32 bit far callback whose address is passed to the DLL. */
/* It calls your function using function pointer stored in UserCallback. */
static long FAR CallbackHelper(long data)
{

return (*UsersCallback)(data);
}

/* Modified glue code for the function that installs the callback. */
long InstallCallback(long (*callback)(long))
{

long retval;
unsigned short cw387;

UsersCallback = callback; /* Store CVI 32 bit pointer in static variable.*/

/* Create a 16 bit thunk for the 32 bit far function CallbackHelper */

if ((CallbackData.UserDefinedProcHandle = GetProcUserDefinedHandle()) == 0)
return FALSE; /* Too many callbacks installed or handles not freed. */

if (DefineUserProc16(CallbackData.UserDefinedProcHandle,
(PROCPTR) CallbackHelper, UDP16_DWORD,
UDP16_CDECL, UDP16_ENDLIST))

goto failed;

if (!(CallbackData.proc16 = GetProc16((PROCPTR) CallbackHelper,
CallbackData.UserDefinedProcHandle)))

goto failed;

CallbackData.proc16Instance = MakeProcInstance(CallbackData.proc16,
GetTaskInstance());

cw387 = Get387CW();
retval = (long)
InvokeIndirectFunction(__static_InstallCallback,

CallbackData.proc16Instance);
Set387CW(cw387);
return retval;

failed:
FreeCallbackResources();
return FALSE;

}

Windows 3.1 Compiler/Linker Issues Chapter 4

LabWindows/CVI Programmer Reference 4-14 © National Instruments Corporation

/* Call this function after unregistering the callback. */
void FreeCallbackResources(void)
{

if (CallbackData.proc16Instance) {
FreeProcInstance(CallbackData.proc16Instance);
CallbackData.proc16Instance = 0;

}
if (CallbackData.proc16) {
ReleaseProc16(CallbackData.proc16);
CallbackData.proc16 = 0;

}
if (CallbackData.UserDefinedProcHandle) {

 FreeProcUserDefinedHandle(CallbackData.UserDefinedProcHandle);
CallbackData.UserDefinedProcHandle = 0;

 }
}

If the DLL returns pointers

DLLs return pointers that fall into the following two classes.

• Pointers pointing to memory that LabWindows/CVI allocates that are passed into the DLL
and later returned by the DLL.

The program can map these pointers back into normal 32-bit pointers that you can use in
LabWindows/CVI code. You can use the function MapAliasToFlat to convert these
pointers.

• Pointers pointing to memory that a DLL allocates.

Because these pointers point to memory that is not in the LabWindows/CVI flat address
space, the program cannot map them back into the normal 32-bit pointers used in
LabWindows/CVI. You can access them in Watcom object code by first converting them to
32-bit far pointers using the function MK_FP32.

To access them in LabWindows/CVI source code you must copy the data into a buffer
allocated in LabWindows/CVI. Notice that neither 16- nor 32-bit far pointers can be passed
to LabWindows/CVI library functions and that LabWindows/CVI does not provide access to
the far pointer manipulation functions provided by Watcom. You must write the loops to
copy the data.

Allocated data refers to data for which memory is allocated using the malloc function and
to data that are static local variables.

Chapter 4 Windows 3.1 Compiler/Linker Issues

© National Instruments Corporation 4-15 LabWindows/CVI Programmer Reference

Case 1

Assume the DLL has the following function:

char *f(char *ptr)
{

sprintf(ptr, "hello");
return ptr;

}

Then assume that a program in LabWindows/CVI uses the function f as follows:

char buffer[240];
char *bufptr;
bufptr = f(buffer);
printf("%s", bufptr);

You would need to modify the glue code as shown here:

char * f(char *ptr)
{

char * retval;
unsigned short cw387;

cw387 = Get387CW();
retval = (char *) InvokeIndirectFunction(__static_f, ptr);
Set387CW(cw387);
retval = MapAliasToFlat(retval); /* Add this line to glue code. */
return retval;

}

Case 2

Assume the DLL has the following function:

char *f(void)
{

char *ptr;

ptr = malloc(100);
sprintf(ptr, "hello");
return ptr;

}

Then assume that a program in LabWindows/CVI uses the function f as follows:

char *bufptr;
bufptr = f();
printf("%s", bufptr);

Windows 3.1 Compiler/Linker Issues Chapter 4

LabWindows/CVI Programmer Reference 4-16 © National Instruments Corporation

You would need to modify the glue code as shown here:

char * f(char *ptr)
{

char *retval;
unsigned short cw387;
char *ptr, *tmpPtr, _far *farPtr32, _far *tmpFarPtr32;
int i;

cw387 = Get387CW();
retval = (char *) InvokeIndirectFunction(__static_f, ptr);
Set387CW(cw387);

/* convert the 16 bit far pointer to a 32 bit far pointer */
farPtr32 = MK_FP32(retval);
tmpFarPtr32 = farPtr32;

/* Calculate the length of the string. Cannot call strlen */
/* because it does not accept far pointers. */

 i = 0
while (*tmpFarPtr32++)

 i++;

/* Allocate buffer from CVI memory and copy in data. */
 if ((ptr = malloc(i + 1)) != NULL) {

tmpFarPtr32 = farPtr32;
 tmpPtr = ptr;
 while (*tmpPtr++ = *tmpFarPtr32++);
}

 return ptr;
}

If a DLL Is Passed a Pointer That Points to Other Pointers

Assume the following DLL functions:

int f(char*ptrs[]);
struct x {
 char *name;
};
int g(struct x *ptr);

For the function f , the glue code generated by LabWindows/CVI converts the pointer to the
array ptrs to a 16-bit far pointer when it is passed to the DLL function, but does not convert the
pointers inside the array (ptrs[0] , ptrs[1] , ...). Similarly, for the function g, the glue code
generated by LabWindows/CVI converts the pointer to the structure (ptr) , but not the pointer
inside the structure (name).

Chapter 4 Windows 3.1 Compiler/Linker Issues

© National Instruments Corporation 4-17 LabWindows/CVI Programmer Reference

If your DLL has functions with these types of parameters, then your DLL cannot use glue code
automatically generated at load time. You can use the Generate Glue Code option to generate
glue code and then modify it in the following manner:

1. Before the call to InvokeIndirectFunction ,

a. Save the hidden pointer in a local variable.

b. Replace the hidden pointer with a 16-bit alias by calling Alloc16BitAlias .

2. After the call to InvokeIndirectFunction ,

a. Free the 16-bit alias by calling Free16BitAlias .

b. Restore the hidden pointer with the value saved in the local variable in step 1.

For the functions f and g, the glue code generated by LabWindows/CVI looks like the following
excerpt:

int f(char **ptrs)
{
 int retval;
 unsigned short cw387;

 cw387 = Get387CW();
 retval = (int) InvokeIndirectFunction(__static_f, ptrs);
 Set387CW(cw387);
 return retval;
}
int g(struct x *ptr)
{
 int retval;
 unsigned short cw387;

 cw387 = Get387CW();
 retval = (int) InvokeIndirectFunction(__static_g, ptr);
 Set387CW(cw387);
 return retval;
}

After you make the necessary changes, the code should look like the following excerpt:

/* Assume NUM_ELEMENTS is the number of pointers in the array passed in.*/
/* Assume ITEM_SIZE is the number of bytes pointed to by each pointer. */
/* If you do not know ITEM_SIZE, but you know that it is 64K or less, */
/* you can use 64K as ITEM_SIZE. */
int f(char **ptrs)
{
 int retval;
 unsigned short cw387;
 int i;
 char *savedPointers[NUM_ELEMENTS];

Windows 3.1 Compiler/Linker Issues Chapter 4

LabWindows/CVI Programmer Reference 4-18 © National Instruments Corporation

/* change the pointers to 16-bit far pointers */
 for (i = 0 ; i < NUM_ELEMENTS; i++) {

 savedPointers[i] = ptrs[i];
 if (Alloc16BitAlias(ptrs[i], ITEM_SIZE, &ptrs[i]) == -1) {
 /* failed to allocate an alias; restore changed pointers. */

while (i--)
ptrs[i] = savedPointer[i];

return < error code >;
 }

 }
 cw387 = Get387CW();
 retval = (int) InvokeIndirectFunction(__static_f, ptrs);
 Set387CW(cw387);

 /* Restore the pointers. */
 for (i = 0 ; i < NUM_ELEMENTS; i++) {
 Free16BitAlias(ptrs[i], ITEM_SIZE);
 ptrs[i] = savedPointers[i];
 }
 return retval;
}

int g(struct x *ptr)
{
 int retval;
 unsigned short cw387;
 char *savedPointer;

 savedPointer = ptr->name;
 if (Alloc16BitAlias(ptr->name, ITEM_SIZE, &ptr->name) == -1)

return < error code >;

 cw387 = Get387CW();
 retval = (int) InvokeIndirectFunction(__static_g, ptr);
 Set387CW(cw387);

 Free16BitAlias(ptr->name, ITEM_SIZE);
 ptr->name = savedPointer;
 return retval;
}

DLL Exports Functions by Ordinal Value Only

If your DLL does not export its functions by name, but by ordinal number only, you must modify
the GetProcAddress function calls in the glue code. Instead of passing the name of the
function as the second parameter, pass PASS_WORD_AS_POINTER(OrdinalNumber) ,
where OrdinalNumber is the ordinal number for the function. For example, if the ordinal
number for the function InstallCallback is 5, you would change the glue code as follows.

Chapter 4 Windows 3.1 Compiler/Linker Issues

© National Instruments Corporation 4-19 LabWindows/CVI Programmer Reference

Generated Glue Code:

if (!(fp = GetProcAddress(DLLHandle,"InstallCallback")))
{

funcname = "_InstallCallback";
goto FunctionNotFoundError;

}

Change to:

if (!(fp = GetProcAddress(DLLHandle, PASS_WORD_AS_POINTER(5))))
{

funcname = "_InstallCallback";
goto FunctionNotFoundError;

}

Recognizing Windows Messages Passed from a DLL

The normal way of communicating with a DLL is to call functions in the DLL. However, there
are cases where other communication methods are needed. The most typical case is that of an
interrupt service routine in a DLL that must notify the application that the interrupt occurred.
You must do this through a callback function.

LabWindows/CVI recognizes messages posted by a DLL through the Windows SDK function
PostMessage , and can initiate a user callback function. This method is useful for hardware
interrupts, but it is subject to the latency associated with Windows messaging. The three
functions LabWindows/CVI uses to recognize Windows messages from a DLL are
RegisterWinMsgCallback , UnRegisterWinMsgCallback , and
GetCVIWindowHandle . You can call these functions from a Watcom compiled module or
from source code.

For complete information on these functions, see the function descriptions contained in
Chapter 4, User Interface Library Reference, of the LabWindows/CVI User Interface Reference
Manual.

RegisterWinMsgCallback

This function registers a callback function that LabWindows/CVI calls when it receives a
Windows message. The declaration for this function follows.

unsigned short RegisterWinMsgCallback (WinMsgCallbackPtr callbackFunc,
char *messageID, void *callbackData,
long dataSize, int *callbackID,
int deleteWhenUserProgramStops);

typedef WinMsgCallbackPtr is as follows:

typedef void (* WinMsgCallbackPtr) (unsigned short wParam,
unsigned long lParam, void *callbackData);

Windows 3.1 Compiler/Linker Issues Chapter 4

LabWindows/CVI Programmer Reference 4-20 © National Instruments Corporation

The return value for RegisterWinMsgCallback is the message number that
LabWindows/CVI expects. If the return value is zero, the registration failed. This number
should be used in the DLL as the uMsg parameter for the Windows function PostMessage .

If dataSize is equal to zero, the callbackData pointer is the same pointer that will be passed to
callbackFunc when it is called. If dataSize is greater than zero, the data pointed to by the
callbackData pointer is copied and the callbackFunc will be called with the callbackData
pointer pointing to the copy of the data.

Use the messageId string to generate the message number.

The callbackId receives the ID to be passed to UnregisterWinMsgCallback .

deleteWhenUserProgramStops determines whether the callback is automatically
unregistered when the user program terminates. If the function returns a 1, the callback is
unregistered. If the function returns a 0, the callback does not unregister.

wParam specifies 16 bits of additional message-dependent information. This number is the
same as the wParam parameter for the Windows function PostMessage , in the DLL.

lParam specifies 32 bits of additional message-dependent information. This number is the same
as the lParam parameter for the Windows function PostMessage , in the DLL.

UnRegisterWinMsgCallback

This function detaches a callback function that was previously registered through
RegisterWinMsgCallback . The declaration for this function is as follows:

void UnRegisterWinMsgCallback (int callbackID);

callbackID is the ID stored in the reference parameter of RegisterWinMsgCallback .

GetCVIWindowHandle

This function returns the window handle associated with the LabWindows/CVI application. This
number should be used in the DLL as the hwnd parameter for the Windows function,
PostMessage . The declaration for this function is as follows:

int GetCVIWindowHandle(void);

To use this function, call RegisterWinMsgCallback and GetCVIWindowHandle . Pass
their return values (uMsg and hwnd) to the DLL. When the DLL sends a message, it calls
PostMessage with these values. When LabWindows/CVI receives the message, it calls the
callback function.

Note: LabWindows/CVI can receive the message only when it is processing events.
LabWindows/CVI processes events when it is waiting for user input. If the program
running in LabWindows/CVI does not call RunUserInterface , GetUserEvent ,
or scanf , or if it does not return from a User Interface Library callback, events will
not be processed. This can be remedied in the program by periodically calling the
User Interface Library function ProcessSystemEvents .

Chapter 4 Windows 3.1 Compiler/Linker Issues

© National Instruments Corporation 4-21 LabWindows/CVI Programmer Reference

Creating 16-bit DLLs with Microsoft Visual C++ 1.5

Be sure to consider the following issues or project options when you create a DLL with
Microsoft Visual C++ 1.5.

• Every function that you want to call from outside the DLL must be far , exported, and must
load the DS register. Loading the DS register is necessary if you are going to use any non-
local variables in a function.

• Use the large or huge memory model. The savings gained by using smaller memory models
is not worth having to use the far keyword throughout your code. This project option can
be found in Compiler » Memory Model » Segment Setup.

• The DS segment can be loaded using the project option SS!=DS, DS loaded on function
entry, which can be found in: Compiler » Memory Model » Segment Setup.

• If you try to use the optimize entry code option (/GD), which can be found in Compiler »
Windows » Prolog/Epilog » Generate Prolog/Epilog For, it will conflict with the /Au
option. You can either not use this option (set it to None), or insert __loadds in front of
every function that you are exporting from the DLL.

• You can make the compiler export a function by either inserting __export between the
return type and the function name, or adding the function name to the exports section of the
.def file.

• If you add the function name to the exports section of the .def file, remember to convert the
name to all caps (pascal) or pre-append an underscore (cdecl).

• Byte align structure members by choosing 1 Byte for the Options » Project » Compiler »
Code Generation » Struct Member Byte Alignment.

Creating 16-bit DLLs with Borland C++

Be sure to consider the following issues or project options when you create a DLL with
Borland C++ 4.x.

• Every function that you want to call from outside the DLL must be far , exported, and must
load the DS register. Loading the DS register is necessary if you are going to use any non-
local variables in a function.

• Use the large or huge memory model. The savings gained by using smaller memory models
is not worth having to use the far keyword throughout your code. This project option can
be found in 16-bit Compiler » Memory Model » Mixed Model Override.

Windows 3.1 Compiler/Linker Issues Chapter 4

LabWindows/CVI Programmer Reference 4-22 © National Instruments Corporation

• You can make the compiler load the DS segment by either setting the project option 16-bit
Compiler » Memory Model » Assume SS Equals DS to Never, or by inserting _loadds
in front of every function that you are exporting from the DLL.

• You can make the compiler export a function by either inserting _export between the
return type and the function name, adding the function name to the exports section of the
.def file, or setting the option 16-bit Compiler » Entry/Exit Code » Windows DLL, all
functions exportable.

• If you add the function name to the exports section of the .def file, remember to convert
the name to all caps (pascal) or pre-append an underscore (cdecl). Also set the Generate
underscores option in Compiler » Compiler Output.

• Turn off the Allocate enums as ints option in Compiler » Code Generation.

• Set the Data alignment to Byte in the 16-bit Compiler » Processor project options.

• Turn off Case sensitive link and Case sensitive exports and imports in the
Linker»General project options.

• Do not use the Linker goodies options in the Linker » 16-bit Linker section of the project
options.

DLL Search Precedence

LabWindows/CVI finds a DLL file in the following ways for Windows 3.1.

• If it is associated with a .fp file, LabWindows/CVI finds the DLL using the following
search precedence.

1. If a .pth file with the same full path name as the .fp file is in the project,
LabWindows/CVI loads the .dll file using the search method specified in the
documentation of the Windows SDK documentation LoadLibrary function. The
.pth file must contain the name of the .dll file, such as mystuff.dll . It should
contain an absolute path or a simple file name.

2. If a .dll file with the same full path name as the .fp file is in the project,
LabWindows/CVI loads the .dll file using the absolute path of the .dll file in the
project.

3. If a .pth file with the same base name as the .fp file is in the same directory as the
.fp file and there is not a .lib or .obj file of the same base name in the same
directory, LabWindows/CVI loads the .dll file using the search method specified in the
documentation of the Windows SDK LoadLibrary function. The .pth file must
contain the name of the .dll file, such as mystuff.dll . It must not contain any
directory names or slashes.

4. If a .dll file is in the same directory as the .fp file, LabWindows/CVI loads the .dll
file as long as it has the same base name as the .fp file and there is not a .lib , .obj ,
or .pth file of the same base name in the same directory.

Chapter 4 Windows 3.1 Compiler/Linker Issues

© National Instruments Corporation 4-23 LabWindows/CVI Programmer Reference

5. If there is not a .pth or .dll file in the same directory as the .fp file,
LabWindows/CVI looks for a DLL with the same base name as the .fp file using the
standard Windows search algorithm. Thus, if a DLL with the same base name is in the
windows or windows/system directory or a directory listed in your PATH
environment variable, LabWindows/CVI finds it.

DLLs for VXIplug&play drivers are not in the same directory as the .fp files, but the
directory containing the DLL is listed in the PATH environment variable. Therefore,
step 5 makes it easier for you to use VXIplug&play instrument driver DLLs in
LabWindows/CVI for Windows 3.1.

• If it is not associated with a file.fp , LabWindows/CVI finds the DLL using the following
search precedence.

1. If a .pth file is specified in the project list, then LabWindows/CVI finds the .dll using
the search method specified in the documentation of the Windows SDK LoadLibrary
function. The .pth file must contain the name of the .dll file, such as
mystuff.dll . It should contain an absolute path or a simple file name.

2. If the .dll file is specified in the project list, then LabWindows/CVI finds the .dll
using the absolute pathname.

• If the .dll file is specified in a call to LoadExternalModule , then

– If it is specified by an absolute pathname, LabWindows/CVI loads that file.

– If it is specified by a relative pathname, then LabWindows/CVI searches for the .dll in
the following order:

1. In the project list

2. In the directory in which the project file is located

3. Among other modules already loaded

4. In the directories specified in the documentation for the Windows SDK
LoadLibrary function (In this case, the include file for the DLL must be in the
project or in one of the include paths specified in the Include Paths command in the
Options menu of the Project window)

© National Instruments Corporation 5-1 LabWindows/CVI Programmer Reference

Chapter 5
UNIX Compiler/Linker Issues

This chapter describes the kinds of compiled modules available under LabWindows/CVI for
UNIX and includes programming guidelines for modules generated by external compilers.

Calling Sun C Library Functions

You can call functions in the Sun C libraries from source code in LabWindows/CVI.
LabWindows/CVI automatically links your program to the following libraries (in the
/usr/lib directory) when they are needed:

Solaris 1: libc.so

Solaris 2: libsocket.so , libnsl.so , libintl.so , libc.so

In general, you can use the Sun header files (in the /usr/include directory) provided for
these libraries. However, you should use the header files provided with LabWindows/CVI for
the ANSI C functions.

Note: Compiler errors or warnings may result when you use some of the header files
provided with Solaris 1 because they do not conform to the ANSI C Standard.

Restrictions on Calling Sun C Library Functions

You cannot call any Sun C Library function that uses data types that are incompatible with the
LabWindows/CVI compiler or libraries. In particular, you should not call functions that use the
long double data type. In LabWindows/CVI the long double data type has 8 bytes, but
the Sun libraries expect a 16-byte object.

Under Solaris 2, you should not call any function that uses the long long data type.
LabWindows/CVI does not recognize this non-ANSI type.

Creating Executables

Whether created by LabWindows/CVI or by an external compiler, executables that use the
LabWindows/CVI libraries behave differently than programs that are run inside of
LabWindows/CVI. This section describes these differences.

UNIX Compiler/Linker Issues Chapter 5

LabWindows/CVI Programmer Reference 5-2 © National Instruments Corporation

Run State Change Callbacks Are Not Available in Executables

When you use a compiled module in LabWindows/CVI, you can arrange for it to be notified of a
change in the execution status (start, stop, suspend, resume). This is done through a callback
function, which is always named __RunStateChangeCallback . This is described in detail
in the section Special Considerations When Using a Loadable Compiled Module, in Chapter 2,
Using Loadable Compiled Modules, of this manual.

You need the Run State Change Callback capability in LabWindows/CVI for the following
reason: when you run a program in the LabWindows/CVI development environment, it is
executed as part of the LabWindows/CVI process. When your program terminates, the operating
system does not clean up as it does when a process terminates. LabWindows/CVI cleans up as
much as it can, but your compiled module may need to do more. Also, if the program is
suspended for debugging purposes, your compiled module may need to disable interrupts.

When you run an executable, it is always executed as a separate process, even if you are
debugging it. Thus, the run state change callback facility is not needed and does not work. When
linking with an external compiler, having a function called __RunStateChangeCallback
in more than one object file causes a link error. If you need a run state change callback in a
compiled module that you intend to use both in LabWindows/CVI and an external compiler, it is
recommended that you put the callback function in a separate source file and create a library (.a)
instead of an object file.

Main Function Must Call InitCVIRTE

If your program calls any functions from the LabWindows/CVI libraries, you must call
InitCVIRTE to initialize the libraries from the executable. This function takes three
arguments. The first and third arguments to this function should always be 0 for UNIX
applications. The second should be the same value as the second argument passed to your main
function. InitCVIRTE returns 0 if it fails. You do not need to call this function when you are
running your program in LabWindows/CVI because the libraries are already initialized.
However, if you do not call this function, your executable will not work. For this reason, it is
recommended that you always include source code similar to the following example in your
program.

int main(int argc, char *argv[])
{

if (InitCVIRTE(0, argv, 0) == 0) {
return 1; /* Failed to initialize */

}
/* your program code here */

}

If you pass NULL for the second argument to InitCVIRTE then your program may still work,
but will have the following limitations.

Chapter 5 UNIX Compiler/Linker Issues

© National Instruments Corporation 5-3 LabWindows/CVI Programmer Reference

• Your executable cannot accept the -display command line argument. As a result, you
cannot specify an X display on the command line for your program to use. You still can use
the DISPLAY environment variable to specify a different X display.

• LoadPanel , LoadExternalModule , DisplayImageFile , SavePanelState ,
RecallPanelState and other functions that normally use the directory of the executable
to search for files use the current working directory instead. If you run the executable from a
directory other than the one that contains your executable, some of these functions may fail to
find files.

Using Externally Compiled Modules

In general, you can load objects compiled with the Sun compilers and the GNU gcc compiler
into LabWindows/CVI, with a few restrictions.

Restrictions on Externally Compiled Modules

Your use of externally compiled modules is restricted as follows.

• The objects must contain references only to symbols in the ANSI C Standard library or in the
Sun C libraries that LabWindows/CVI loads (listed under Calling Sun C Library Functions).

• The objects must not use any data types that are incompatible with the LabWindows/CVI
compiler or libraries. Incompatible data types include the following:

– long double with any Sun compilers. A Sun compiler implements long double as
a 16-byte object, but LabWindows/CVI implements it as an 8-byte object.

– long long with the Solaris 2 Sun compiler. LabWindows/CVI does not support this
non-ANSI type.

– Any enumeration type. Many compilers implement enumeration types with differing
sizes and values.

• You cannot load a Solaris 2 object file when running LabWindows/CVI under Solaris 1.
However, you can load Solaris 1 objects when running under Solaris 2.

Compiling Modules With External Compilers

You can compile external modules using LabWindows/CVI header files instead of the headers
supplied with the compiler. To compile this way, you must define the preprocessor macro
_NI_sparc_ to the value 1 for Solaris 1 or to the value 2 for Solaris 2.

UNIX Compiler/Linker Issues Chapter 5

LabWindows/CVI Programmer Reference 5-4 © National Instruments Corporation

When using the Sun ANSI C compiler, use the -I flag to add the LabWindows/CVI include
directory to the search list, as shown in the following command lines:

Solaris 1: acc -Xc -I/home/cvi/include -D_NI_sparc_=1 -c mysource.c

Solaris 2: cc -Xc -I/home/cvi/include -D_NI_sparc_=2 -c mysource.c

When using the GNU compiler, use the flag -nostdinc to disable the standard include files
and the flag -I LabWindows/CVIHeadersPath (where LabWindows/CVIHeadersPath is the path
for your include files) to enable the LabWindows/CVI include files. Also, you should use the -
ansi flag to accept ANSI C. For example, to compile the file mysource.c using
LabWindows/CVI headers under Solaris 1, use the following command line.

gcc -ansi -nostdinc -I/home/cvi/include -D_NI_sparc_=1 -c mysource.c

Some warnings about conflicting types of built-in functions memcmp and memcpy may be
generated, but you can ignore them.

Note: These examples assume that /home/cvi/include is the LabWindows/CVI header
files directory. The actual path depends on how you installed your copy of
LabWindows/CVI.

You cannot use the non-ANSI C Sun compiler cc because it does not recognize some ANSI C
constructs in the header files, such as function prototypes and the keywords const , void , and
volatile .

Locking Process Segments into Memory Using plock()

You can use the UNIX function plock to lock the text and data segments of your program into
memory. However, this function locks the entire segments of the LabWindows/CVI process, not
just the segments associated with your program. Also, because the text segments of
LabWindows/CVI programs actually reside in the data segment of the LabWindows/CVI
process, you must lock both text and data segments (using plock(PROCLOCK)) in order to
lock all text into memory.

Note: The effective user ID of the LabWindows/CVI process must be superuser to use the
plock function.

© National Instruments Corporation 6-1 LabWindows/CVI Programmer Reference

Chapter 6
Building Multiplatform Applications

This chapter contains guidelines and caveats for writing platform-independent LabWindows/CVI
applications. LabWindows/CVI currently runs under Windows 3.1, Windows 95 and Windows
NT for the PC and Solaris 1 and Solaris 2 for the SPARCstation.

One major feature of LabWindows/CVI is that it supports multiplatform programming. In
general, the portability of a LabWindows/CVI application can be assured by following a few
simple guidelines.

• Write code in strict ANSI C.

• Observe and repair all LabWindows/CVI compile, link, and runtime diagnostics.

• Use LabWindows/CVI supported library functions, avoiding system dependent library calls
when possible.

• Avoid the use of non-portable image formats and fonts in your user interface.

Multiplatform Programming Guidelines

LabWindows/CVI is portable because it uses ANSI C program files, LabWindows/CVI User
Interface Resource files, and National Instruments libraries.

Any platform dependent code should be segregated in your source code using conditional
preprocessor directives controlled with the built-in macros, such as _NI _mswin32 _,
_NI _mswin16 _, _NI _mswin _, _NI _unix _ and _NI _sparc _. More information on the
macros that LabWindows/CVI automatically defines is available in the Compiler Defines section
of Chapter 1, LabWindows/CVI Compiler.

Library Issues

Although LabWindows/CVI for Windows 95 and NT allows use of the Windows 32-bit SDK
library calls, their use is discouraged unless you intend the LabWindows/CVI application to run
only under Windows 95 and NT.

The sopen and fdopen functions are only available under Windows. Their use is discouraged
unless you intend the LabWindows/CVI application to run only under Windows.

Building Multiplatform Applications Chapter 6

LabWindows/CVI Programmer Reference 6-2 © National Instruments Corporation

Although LabWindows/CVI allows use of host system library calls (such as ioctl , fcntl ,
and so on) under UNIX, their use is discouraged unless you intend the LabWindows/CVI
application to run only under UNIX. In general, you should avoid using UNIX host system calls
in C program files to ensure that your program is portable. See the Calling the UNIX C Library
from Source Code section of Chapter 1, LabWindows/CVI Compiler, for more information on
using user system library calls.

Under UNIX, the low-level I/O functions open , close , read , write , lseek , and eof are
available in the UNIX C library. See the Calling the UNIX C Library from Source Code section
of Chapter 1, LabWindows/CVI Compiler, for more information on using UNIX C low-level
functions. These functions are portable to Windows if you include lowlvlio.h in your
Windows application.

The ANSI C, User Interface, Analysis, Formatting and I/O, Utility, GPIB, VXI, RS-232, and
TCP libraries are portable across platforms.

Only LabWindows/CVI for Windows has DDE and Data Acquisition libraries. The X Property
Library is only available under UNIX.

Although LabWindows/CVI allows TCP library calls from the application on all platforms, you
are responsible for ensuring that the system has hardware and software support for the TCP
server.

Various processor architectures store integers and floating point numbers in different byte order.
To circumvent these inconsistencies, use the [o] modifier in the Formatting and I/O Library to
describe the byte ordering of device data. In a Fmt/Scan function, use the [o] modifier to
describe the byte ordering for the buffer that contains the raw device data. Do not use the [o]
modifier on the buffer that holds the data in the byte ordering of the host processor. For
example, if you are working with a GPIB instrument that sends two-byte binary data in Intel byte
order, use the following code.

short instr_buf[100];
short prog_buf[100];
status = ibrd (ud, instr_buf, 200);
Scan (instr_buf, "%100d[b2o01]>%100d", prog_buf);

If you are working with a GPIB instrument that sends two-byte binary data in Motorola byte
order, use the Scan function as shown in the following example.

Scan (instr_buf, "%100d[b2o10]>%100d", prog_buf);

In either case, the [o] modifier is used only on the buffer containing the raw data from the
instrument (instr_buf). LabWindows/CVI ensures that the program buffer (prog_buf) is
using the proper byte order for the host processor. For a full description of the [o] modifier, see
Chapter 2, Formatting and I/O Library, of the LabWindows/CVI Standard Libraries Reference
Manual.

Chapter 6 Building Multiplatform Applications

© National Instruments Corporation 6-3 LabWindows/CVI Programmer Reference

Externally Compiled Module Issues

Although you can use externally compiled modules in LabWindows/CVI as described in this
manual, the best medium for application portability is ANSI C source code. Object modules are
not directly portable from one platform to another because the object file formats on the various
platforms differ.

For example, the object file formats are different among Windows 3.1, Windows 95/NT, and
UNIX systems. Additionally, although SPARCstations have the same computer architecture,
Solaris 1.x (Sun OS 4.x) and Solaris 2.x use different object file formats, which make object
modules non-portable even between these two systems.

To use an externally compiled module across platforms, you must recompile the source code for
the module with a compiler for the target system.

Multiplatform User Interface Guidelines

User Interface Resource (.uir) files are portable across platforms.

Image file formats other than PCX (.pcx) may not be portable.

Color hue and intensity differences between platforms are unavoidable.

The only fonts sure to be available on all platforms are the National Instruments fonts. National
Instruments fonts of the same name resemble each other stylistically from one platform to
another, although there may exist some relative size differences. The National Instruments Meta
Fonts are of uniform size (height) relative to the rest of the user interface, and are the most
portable family of fonts available. The width of the National Instruments Meta Fonts may differ
slightly from one platform to another, however. Allow for extra space in the width of all control
labels to assure consistent appearance.

You may find the User Interface library functions GetCtrlBoundingRect ,
GetTextDisplaySize , and GetScreenSize useful in calculating and compensating for
font-size discrepancies between platforms.

The order in which LabWindows/CVI processes user interface events may differ between the
Windows and UNIX platforms. This happens because of differences between the underlying
window management systems on which LabWindows/CVI is built.

You should not assign the <FORWARD DELETE> key as a hot-key in your user interface,
because that key does not exist on all UNIX workstations.

© National Instruments Corporation 7-1 LabWindows/CVI Programmer Reference

Chapter 7
Creating and Distributing Standalone
Executables and DLLs

This chapter describes how the LabWindows/CVI Run-time Engine, DLLs, externally compiled
modules, and other files interact with your executable file. This chapter also describes how to
perform error checking in a standalone executable program. You can create executable programs
from any project that runs in the LabWindows/CVI environment.

Introduction to the Run-Time Engine

With your purchase of LabWindows/CVI, you received the Run-time Engine as part of your
distribution. The LabWindows/CVI Run-time Engine is needed to run executables or use DLLs
created with LabWindows/CVI, and it must be present on any target computer on which you
want to run your executable program. You can distribute the Run-time Engine according to your
license agreement.

Distributing Standalone Executables under Windows

Under Windows, the LabWindows/CVI Run-time Engine can be bundled with your distribution
kit using the Create Distribution Kit command in the Build menu of the Project window, or
you can distribute it separately by making copies of the Run-time Engine.

Minimum System Requirements for Windows 95 and NT

To use a standalone executable or DLL that depends on the LabWindows/CVI run-time libraries,
you must have the following:

• Windows 95, or Windows NT version 3.51 or later

• A personal computer using at least a 33 MHz 80486 or higher microprocessor

• A VGA resolution (or higher) video adapter

• A minimum of 8 MB of memory

• Free hard disk space equal to 4 MB, plus space to accomodate your executable or DLL and
any files the executable or DLL needs

Creating and Distributing Standalone Executables and DLLs Chapter 7

LabWindows/CVI Programmer Reference 7-2 © National Instruments Corporation

No Math Coprocessor Required for Windows 95 and NT

You do not need a math coprocessor or emulator to use the LabWindows/CVI run-time libraries
in Windows 95 or NT.

Minimum System Requirements for Windows 3.1

To run a standalone executable created by LabWindows/CVI for Windows, you must have the
following:

• MS-DOS, version 3.1 or later

• Microsoft Windows operating system, version 3.1 or later

• A personal computer using at least a 25 MHz 80386 or higher microprocessor (National
Instruments recommends a 33 MHz 80486 or higher microprocessor)

• A VGA resolution (or higher) video adapter

• A math coprocessor

• A minimum of 4 MB of memory

• Free hard disk space equal to 2 MB, plus space to accomodate your executable and any files
the executable needs

Math Coprocessor Software Emulation for Windows 3.1

To run a standalone executable created by LabWindows/CVI for Windows 3.1, your system must
have a math coprocessor. LabWindows/CVI recognizes the following coprocessor emulation
programs.

• WEMU387.386 from WATCOM

• Q387 from Quickware

Distributing Standalone Executables under UNIX

The Create Distribution Kit command is not available with UNIX versions of
LabWindows/CVI. However, you can use one of several UNIX shell scripts in the misc/bin
directory of the LabWindows/CVI installation directory to package your standalone programs for
distribution.

Chapter 7 Creating and Distributing Standalone Executables and DLLs

© National Instruments Corporation 7-3 LabWindows/CVI Programmer Reference

Distributing Standalone Executables under Solaris 2

To use the System V software packaging utility pkgmk to distribute executable programs under
Solaris 2, complete the following steps:

1. If your program loads .uir files with LoadPanel or loads external modules with
LoadExternalModule , use caution when you specify the file names in calls to these
functions. If you use a relative path, the path is relative to the directory containing the
executable. See the section Location of Files on the Target Machine for Running Executable
Programs and DLLs in this chapter for more information.

2. Create a directory to contain your executable program and associated files. Structure the
directory exactly as you want it to appear after installation. Test your program by running it
from that directory.

3. From the directory containing your executable program and associated files execute the shell
script makepkg in the misc/bin directory of the LabWindows/CVI installation directory
to create a distribution package. The script requires the following information to build the
package:

• Abbreviated package name that can have up to 9 characters, in the form, XYZmyapp

• Text name for the package

• Default installation base directory on the user’s machine

• Directory to place the build package

 The script requests the following information, but it is optional:

• Company or vendor name for the package

• Name and path to a copyright notice file for the package

• Relative path and executable name to create as a symbolic link

4. The makepkg script creates the following files and directory structure. (In the following
paths, pkgname stands for the name of the package.)

 pkgname/install/copyright

 pkgname/install/postinstall

 pkgname/install/preremove

 pkgname/pkginfo

 pkgname/pkgmap

Creating and Distributing Standalone Executables and DLLs Chapter 7

LabWindows/CVI Programmer Reference 7-4 © National Instruments Corporation

 pkgname/reloc/ pkgname/ <contents of application directory>

 You can now place the pkgname directory and its contents onto your distribution media.

5. To run your executable, you need the LabWindows/CVI Run-time Engine. You can build the
package for the LabWindows/CVI Run-time Engine by executing makecvirte located in
the misc/bin directory of the LabWindows/CVI installation directory. The makecvirte
script prompts you to name the directory in which to place the completed package. The
package name is NICcvirte .

6. To install or remove a package on a machine you must be logged in as root. There are two
methods for installing and removing a package.

Method 1: Use the Software Management Tool swntool located in the /usr/sbin
directory of your system.

Method 2: Use the following command to install a package:

pkgadd -d < path to package > pkgname

To remove a previously installed package, issue the following command:

pkgrm pkgname

Distributing Standalone Executables under Solaris 1

To distribute executable programs under Solaris 1 or Solaris 2, complete the following steps.

1. If your program loads UIR files with LoadPanel or loads external modules with
LoadExternalModule , use caution when you specify the file names in calls to these
functions. If you use a relative path, the path is relative to the directory containing the
executable. See the section entitled Location of Files on the Target Machine for Running
Executable Programs and DLLs in this chapter for more information.

2. Create a directory containing your executable program and associated files. Structure the
directory exactly as you want it to appear after installation. Test your program by running it
from that directory.

3. Use the shell script makedist in the misc/bin directory to create a distribution package.
This script creates a compressed tar file that contains the directory you created in step 2 and a
copy of the LabWindows/CVI Run-time Engine, which is required to run your executable.

4. Make a copy of the installation script INSTALL.sample in the misc/bin directory and
customize it using the information provided by makedist . This installation script unpacks
a distribution package, creating a directory like the one you created in step 2, and then installs
the LabWindows/CVI Run-time System. The installation script can install from floppy disks
or from the current directory.

Chapter 7 Creating and Distributing Standalone Executables and DLLs

© National Instruments Corporation 7-5 LabWindows/CVI Programmer Reference

5. If you want to distribute your program on floppy disks, use the shell script makefloppy in
the misc/bin directory to copy your installation script and distribution package to floppy
disks. If you want to distribute using some other method (such as anonymous FTP), you
need to provide users with the package file created by makedist and the customized
installation script that will extract the files from the package.

Minimum System Requirements for UNIX

To run a standalone executable created by LabWindows/CVI for UNIX, your system must have
the following:

• Sun SPARCstation

• Solaris 1.x (SunOS 4.1.2 or greater) or Solaris 2.4 (Sun OS 5.4)

• At least 24 megabytes of RAM

• At least 32 megabytes of disk swap space

• Free hard disk space equal to 2 MB, plus space to accomodate your executable and any files
the executable needs

Configuring the Run-Time Engine
This section applies to you, the developer, as well as the end-user who uses your executable
program. Feel free to use the text in this section in the documentation for your executable
program.

Translating the Message File

The message file (msgrt n.txt where n is the version number of the Run-time Engine) is a text
file containing the error messages displayed by the Run-time Engine. It is found in the bin
directory of the Run-time Engine installation directory. You can translate the message file into
other languages. To translate the message file, perform the following steps.

1. Copy the file to another name so you have it as a backup.

2. Use a text editor to modify msgrt n.txt . Translate only the text that is contained in
quotation marks. You must not add or delete any message numbers.

3. Input the file into the countmsg.exe (countmsg on UNIX) utility so that it is encoded
for use with the Run-time Engine, as in the following example:

countmsg msgrt4.txt

Creating and Distributing Standalone Executables and DLLs Chapter 7

LabWindows/CVI Programmer Reference 7-6 © National Instruments Corporation

Option Descriptions

The Run-time Engine recognizes the following options. On the PC, these options are set during
the installation of the Run-time Engine.

Note: Under UNIX, changes to options do not take effect until you restart your X server or
issue the xrdb .Xdefaults command.

cvirt x (Windows 3.1 Only)

Because the executable loads and executes the Run-time Engine, it must be able to locate the
Run-time Engine on the hard disk. Under Windows 3.1, the executable finds the Run-time
Engine using the cvirt x (where x is the version number of the Run-time Engine) configuration
option. Set this configuration option as follows.

Note: Under Windows 95 and NT, the location of the Run-time Engine DLL is always the
Windows system directory.

• Windows 3.1 Configuration

Set Windows 3.1 configuration options in the win.ini file. There is a configuration string
associated with the cvirt x option in the [cvirt x] section as in the following example.

[cvirt4]
cvirt4=c:\cvi\cvirt4.exe

cvidir (Windows Only)

Under Windows 95 and NT, cvidir specifies the location of the directory containing the bin
and fonts subdirectories that are required by the Run-time Engine. You must define this
Registry option to enable the Windows 95 and NT Run-time Engine DLL to load.

For Windows 3.1, set the cvidir only if the Run-time Engine resides in a directory other than
the directory containing the bin and fonts subdirectories. If you do not specify a directory,
the Run-time Engine’s default directory is the directory specified by cvirt x (where x is the
version number of the Run-time Engine).

• Windows 95 and NT Configuration

Set configuration options in Windows 95 and NT in the Registry under the following key.

HKEY_LOCAL_MACHINE\Software\National Instruments\CVI Run-Time Engine

Change the path in the subkey, for example, from \4.0\cvidir to c:\cvi .

• Windows 3.1 Configuration

Chapter 7 Creating and Distributing Standalone Executables and DLLs

© National Instruments Corporation 7-7 LabWindows/CVI Programmer Reference

Set Windows 3.1 configuration options in the win.ini file. There is a configuration string
associated with the cvidir option in the [cvirt x] section, similar to the following
example.

[cvirt4]
cvidir=c:\cvi

Necessary Files for Running Executable Programs

In order for your executable to run successfully on a target computer, any files that are required
by the executable must be accessible. Your final distribution kit should contain all of the
necessary files for installing your LabWindows/CVI executable program on a target machine as
shown in Figure 7-1.

Figure 7-1. Files Needed to Run a LabWindows/CVI Executable Program on a Target Machine

• The Executable contains a precompiled, prelinked version of your LabWindows/CVI project
and any instrument driver program files that are linked to your project. It also contains the
application name and icon resource to be registered to the operating system. The executable
has an associated icon that you can double-click on to start the application. When the
executable is started, it loads and starts the Run-time Engine. Under UNIX, the executable
returns the value returned by main or the value passed to exit .

• The Run-Time Engine (CVIRT.DLL and CVIRTE.DLL under Windows 95 and NT,
CVIRTn.EXE under Windows 3.1, and cvirt n under UNIX, where n is the version of the
Run-time Engine) is an execute-only version of the LabWindows/CVI environment. The
Run-time Engine contains all of the built-in library, memory, and program execution help
present in the LabWindows/CVI environment, without all of the program development tools
such as the source editor, compiler, debugger, and user interface editor. The Run-time
Engine is smaller than LabWindows/CVI environment and thus loads faster and requires less

Creating and Distributing Standalone Executables and DLLs Chapter 7

LabWindows/CVI Programmer Reference 7-8 © National Instruments Corporation

memory. You need only one copy of the Run-time Engine on each target machine even
when you have multiple executables.

• UIR Files are the User Interface Resource files that are used by your application program.
Load these files using LoadPanel and LoadMenuBar .

• Image Files are the graphical image files that are programmatically loaded and displayed on
your user interface using DisplayImageFile .

• State Files are the user interface panel state files that are saved using SavePanelState
and loaded using RecallPanelState .

• DLL Files(Windows Only) are the Windows Dynamic Link Library files that are used by
your application program.

• PTH Files (Windows 3.1 Only) specify the location of DLL files when you want to load the
DLL from a special directory, or indicate that you want to find a DLL using the standard
Windows DLL search algorithm.

• External .lib or .a Files are compiled 32-bit .lib files on the PC or .a files under UNIX
that are loaded by LoadExternalModule and are not listed in the project.

• External .obj or .o Files are compiled 32-bit .obj files on the PC or .o files under UNIX
that are loaded by LoadExternalModule and are not listed in the project.

• Other Files are files opened by your executable using open , fopen , OpenFile , and so
on.

Necessary Files for Using DLLs Created in Windows 95/NT

In Windows 95 and NT, you can distribute DLLs that use the LabWindows/CVI run-time
libraries. As in the case of standalone executables, they must be distributed along with the
LabWindows/CVI run-time library DLLs.

Location of Files on the Target Machine for Running
Executables and DLLs

To assure proper execution, it is critical that all files associated with your executable program be
in proper directories on the target machine. On the PC, you specify these files in a relative
directory structure in the dialog box that appears when you select Create Distribution Kit from
the Build menu of the Project window in LabWindows/CVI. (See the LabWindows/CVI User
Manual for details.) This section describes the proper location of each of the files shown in
Figure 7-1.

Chapter 7 Creating and Distributing Standalone Executables and DLLs

© National Instruments Corporation 7-9 LabWindows/CVI Programmer Reference

LabWindows/CVI Run-Time Engine on Windows 95/NT

For Windows 95 and NT, the following set of DLLs contain the run-time libraries.

cvirt.dll
cvirte.dll

These DLLs are distributed on a separate diskette (or in a separate directory in the CD-ROM)
and are installed as part of LabWindows/CVI. The Create Distribution Kit command in the
Build menu of the Project window optionally bundles the run-time library DLLs into your
distribution kit. Alternatively, you can make copies of this diskette (or the CD-ROM directory)
for separate distribution. The run-time library DLLs are always installed in the Windows system
directory.

The LabWindows/CVI run-time libraries do not include the DLLs or drivers for National
Instruments hardware. End-users can install the DLLs or drivers for their hardware from the
distribution disks that National Instruments supplies to those users.

LabWindows/CVI Run-Time Engine on Windows 3.1

For Windows 3.1, the LabWindows/CVI Run-time Engine comes in the form of an executable
file. The Run-time Engine is distributed with LabWindows/CVI on a separate diskette and is
installed as part of the LabWindows/CVI installation. The Create Distribution Kit command in
the Build menu of the Project window optionally bundles the Run-time Engine into your
distribution kit. Alternatively, you can make copies of this diskette for separate distribution. The
end-user selects the directory into which the Run-time Engine is installed.

The LabWindows/CVI run-time libraries do not include the DLLs or drivers for National
Instruments hardware. End-users can install the DLLs or drivers for their hardware from the
distribution disks that National Instruments supplies to those users.

Rules for Accessing UIR, Image, and Panel State Files on All Platforms

The recommended method for accessing UIR, image, and panel state files in your executable
program is to place the files in the same directory as the executable and pass simple filenames
(that is, no drive letters or directory names) to LoadPanel , DisplayImageFile ,
SavePanelState , and RecallPanelState .

If you do not want to store these files in the same directory as your executable, you must pass
pathnames to LoadPanel , DisplayImageFile , SavePanelState , and
RecallPanelState . These functions interpret relative pathnames as being relative to the
directory containing the executable.

Creating and Distributing Standalone Executables and DLLs Chapter 7

LabWindows/CVI Programmer Reference 7-10 © National Instruments Corporation

Rules for Using DLL Files under Windows 95 and NT

In Windows 95 or NT, your executable or DLL can link to a DLL only via an import library. (In
this section, a DLL used by an executable or by another DLL is referred to as a subsidiary DLL.)
An import library can be linked into your program in any of the following ways.

• It can be listed in your project.

• It can be the program file associated with the .fp file for an instrument driver or user library.

• It can be dynamically loaded by a call to LoadExternalModule .

If a DLL import library is listed in the project or is associated with an instrument driver or user
library, the import library is statically linked into your executable or DLL. On the other hand, if
the import library is loaded via a call to LoadExternalModule , it must be distributed
separately from your executable and loaded at run time. See the section Rules for Loading Files
Using LoadExternalModule.

Regardless of the method you use to link the import library, the subsidiary DLL must be
distributed separately and is loaded at run time. The import library always contains the name of
the subsidiary DLL. When your executable or DLL is loaded, the operating system finds the
subsidiary DLL using the standard DLL search algorithm, which is described in the Windows
SDK documentation for the LoadLibrary function. The search precedence is,

• The directory from which the application was loaded

• The current working directory

• Under Windows 95, the Windows system directory. Under Windows NT, the Windows
system32 and system directories

• The Windows directory

• The directories listed in the PATH environment variable

Create Distribution Kit automatically includes DLLs in your distribution kit that are referenced
by true import libraries in your project. You must add to the distribution kit any DLLs that are
loaded via LoadExternalModule or that you load by calling the Windows SDK
LoadLibrary function.

DLLs for National Instruments hardware should not be part of your distribution kit. These DLLs
must be installed from the distribution disks supplied by National Instruments.

Rules for Using DLL Files in Windows 3.1

DLL files and DLL path files are never linked into the executable, so you must distribute them
as separate files. Create Distribution Kit automatically includes DLLs that are referenced by
your project in your distribution kit. The only exceptions are DLLs for National Instruments
hardware and DLLs that are loaded using LoadExternalModule .

Chapter 7 Creating and Distributing Standalone Executables and DLLs

© National Instruments Corporation 7-11 LabWindows/CVI Programmer Reference

DLLs for National Instruments hardware should not be part of your distribution kit. These DLLs
must be installed from the distribution disks supplied by National Instruments.

If you are loading DLLs using LoadExternalModule , refer to the following section, Rules
for Loading Files Using LoadExternalModule.

If you are using a DLL file, a DLL path file, or a DLL glue object module in your project or as a
loaded instrument driver, the Run-time Engine always looks for a corresponding DLL path
(.pth) file before looking for the DLL itself. This search mechanism lets the end-user of your
executable place the DLLs anywhere on the target computer. The Run-time Engine uses the
following DLL search method:

1. Look for a .pth file in the directory of the executable that has the same base name as the
file in the project or as the instrument driver. If the .pth file contains an absolute path to
the DLL, use that path to find the DLL. If the .pth file contains a simple filename, use the
search method specified in the documentation for the Windows SDK LoadLibrary
function to find the DLL (\WINDOWS, \WINDOWS\SYSTEM, then the PATH environment
variable).

2. Look for a .dll file in the directory of the executable that has the same base name as the
file in the project or as the instrument driver. If the .dll file is not in that directory, use the
search method specified in the documentation for the Windows SDK LoadLibrary
function to find the DLL (\WINDOWS, \WINDOWS\SYSTEM, then the PATH environment
variable).

Note: Before searching for a .dll file, the Run-time Engine always looks for a .pth file.
Therefore, your choice of whether to use a .pth file when developing your application
in the LabWindows/CVI environment does not restrict your choice of whether to use a
.pth file in the standalone application.

Rules for Loading Files Using LoadExternalModule

The following file types can be loaded by LoadExternalModule .

Library Files: .lib (Windows) or .a (UNIX)

Object Modules: .obj (Windows) or .o (UNIX)

DLL Import Library Files: .lib (Windows 95 and NT only)

DLL Path Files: .pth (Windows 3.1 only)

DLL Files: .dll (Windows 3.1 only)

Source Files: .c (linked into your executable or DLL)

Creating and Distributing Standalone Executables and DLLs Chapter 7

LabWindows/CVI Programmer Reference 7-12 © National Instruments Corporation

Forcing Modules Referenced by External Modules into Your Executable or DLL

In the LabWindows/CVI development environment, external modules can link to modules in the
Instrument and Library menus regardless of whether they are referenced elsewhere in your
project. However, when you create a standalone executable, only modules that your project
references are included in the executable. If an external module references modules not included
in the executable, calls to RunExternalModule or GetExternalModuleAddr on that
external module will fail.

To avoid this problem, you must force any missing modules into your executable or DLL. You
can do this when creating your executable or DLL by using the Add Files To Executable or
Add Files To DLL button to bring up a list of project .lib , project .a , Instrument, and Library
files. Checkmark the files you want to be included in your executable or DLL. If a .lib or .a
file is checkmarked, it will be linked in its entirety.

Alternatively, you can link modules into your executable or DLL by including dummy references
to them in your program. For instance, if your external module references the functions FuncX
and FuncY , include the following statement in your program.

void *dummyRefs[] = {(void *)FuncX, (void *)FuncY};

Using LoadExternalModule on Files in the Project

You can call LoadExternalModule on files listed in the project. However, when you create
an executable or DLL from your project, you may have additional work to do.

• If you link your executable or DLL in LabWindows/CVI, the following rules apply for files
listed in the project.

– For .c or .obj files, everything works automatically.

– For .dll or .pth files (Windows 3.1 only), see Rules for Using DLL Files in Windows
3.1.

– For .lib files, by default, Create Standalone Executable File or Create Dynamic
Link Library only links in the library modules that are referenced statically in the
project. Therefore, you must force the modules containing the functions that are called
through GetExternalModuleAddr to be linked into the executable.

To force these modules to be linked into the executable, include the library file in the
project and take one of the following actions:

• Specify that the entire library file be linked into the executable by selecting it using
the Add Files to Executable button in the Create Standalone Executable File
dialog box, or the Add Files to DLL button in the Create Dynamic Link Library
dialog box.

Chapter 7 Creating and Distributing Standalone Executables and DLLs

© National Instruments Corporation 7-13 LabWindows/CVI Programmer Reference

• Cause the modules you need to be linked into the executable by referencing them
statically. For example, you could have an array of void pointers and initialize them
to the names of the symbols needed.

If you choose to link the library file directly into the executable, you must pass the simple
filename of the library file to LoadExternalModule .

• If you link in an external compiler on Windows 95/NT, the LabWindows/CVI Utility library
does not know the location of symbols in the externally linked executable or DLL.
Consequently, without further action on your part, calls to GetExternalModuleAddr or
RunExternalModule on modules that are linked into your executable or DLL will fail.
Your alternatives are,

1. Remove the file from the project and distribute it as a separate .obj , .lib , or .dll .

2. Use the Other Symbols section of the External Compiler Support dialog box (in the
Build menu of the Project window) to create an object module containing a table of
symbols you want to be found by GetExternalModuleAddr . If you use this
method, pass the empty string (””) to LoadExternalModule as the module
pathname. The empty string indicates that the module was linked into your project
executable or DLL.

Using LoadExternalModule on Library and Object Files Not in the Project

When you call LoadExternalModule on a library or object file not in the project, you must
keep the library or object file as a separately distributed file.

When you keep an object or library file separate, you can manage memory more efficiently and
replace it without having to replace the executable or DLL. For this reason, it is recommended
that if you are calling LoadExternalModule on a library or object in the project, you remove
(or exclude) the file from the project before selecting Create Standalone Executable File or
Create Dynamic Link Library , and then include it as a separate file when using Create
Distribution Kit .

However, bear in mind that you cannot statically reference functions defined in a separate library
or object file from the executable or DLL. You must use LoadExternalModule and
GetExternalModuleAddr to make such references.

When you distribute the library or object file as a separate file, it is recommended that you place
the file in the same directory as the executable or DLL. By placing the file in the same directory,
you are able to pass a simple filename to LoadExternalModule . If you do not want the file
to be in the same directory as your executable, you must pass a pathname to
LoadExternalModule . LoadExternalModule interprets relative pathnames as being
relative to the directory containing the executable or DLL.

Creating and Distributing Standalone Executables and DLLs Chapter 7

LabWindows/CVI Programmer Reference 7-14 © National Instruments Corporation

Using LoadExternalModule on DLL Files under Windows 95 and NT

Under Windows 95 and NT, DLLs cannot be directly referenced by LoadExternalModule .
The call to LoadExternalModule must reference the DLL import library instead. The import
library can be linked into your executable or DLL, or it can be distributed separately and loaded
dynamically. For import libraries that are linked into your executable or DLL, see Using
LoadExternalModule on Files in the Project. For import libraries that are loaded dynamically,
see the section, Using LoadExternalModule on Library and Object Files Not in the Project.

DLLs must always be distributed as separate files. The operating system finds the DLL
associated with the loaded import library using the standard DLL search algorithm, which is
described in the Windows SDK documentation for the LoadLibrary function. The search
precedence is:

• The directory from which the application was loaded

• The current working directory

• Under Windows 95, the Windows system directory. Under Windows NT, the Windows
system32 and system directories

• The Windows directory

• The directories listed in the PATH environment variable

Using LoadExternalModule on DLL and Path Files under Windows 3.1

DLL files and DLL path files are never linked into the executable, so they must be distributed as
separate files.

Your executable can call LoadExternalModule directly on a DLL or DLL path file only if
the DLL or DLL path file is included in the project. When you select Create Standalone
Executable File, the DLL glue code is created automatically and linked into the executable.

Alternatively, you can pass the DLL glue object module file name for the DLL to
LoadExternalModule . You can generate the DLL glue object module by opening the .h
file for the DLL in a Source window of LabWindows/CVI and selecting Generate DLL Glue
Object from the Options menu.

If you include the DLL, the DLL path file, or the DLL glue object module as a file in the project,
LoadExternalModule must be passed a simple filename, and it uses the following search
method to find the DLL.

1. Look for a .pth file in the directory of the executable that has the same base name as the
file passed to LoadExternalModule . If the .pth file contains an absolute path to the
DLL, use that path to find the DLL. If the .pth file contains a simple filename, use the
search method specified in the documentation for the Windows SDK LoadLibrary

Chapter 7 Creating and Distributing Standalone Executables and DLLs

© National Instruments Corporation 7-15 LabWindows/CVI Programmer Reference

function to find the DLL (\WINDOWS, \WINDOWS\SYSTEM, then the PATH environment
variable).

2. Look for a .dll file in the directory of the executable that has the same base name as the
file passed to LoadExternalModule . If the .dll file is not in that directory, use the
search method specified in the documentation for the Windows SDK LoadLibrary
function to find the DLL (\WINDOWS, \WINDOWS\SYSTEM, then the PATH environment
variable).

If you maintain the DLL glue object module as a separate file from the executable,
LoadExternalModule must be passed a pathname to the DLL glue object module, and it
uses the following search method to find the DLL.

1. Look for a .pth file that is in the same directory as the DLL glue object module and that has
the same base name as the DLL glue object module. If the .pth file contains an absolute
path to the DLL, use it to find the DLL. If the .pth file contains a simple filename, use the
search method specified in the documentation for the Windows SDK LoadLibrary
function to find the DLL (\WINDOWS, \WINDOWS\SYSTEM, then the PATH environment
variable).

2. Look for a .dll file that is in the same directory as the DLL glue object module and that has
the same base name as the DLL glue object module. If the .dll file is not in that directory,
use the search method specified in the documentation for the Windows SDK LoadLibrary
function to find the DLL (\WINDOWS, \WINDOWS\SYSTEM, then the PATH environment
variable).

Note: Before searching for a .dll file, a standalone executable always looks for a .pth
file. Therefore, your choice of whether to use a .pth file when developing your
application in the LabWindows/CVI environment does not restrict your choice of
whether to use to .pth file in the standalone application.

Using LoadExternalModule on Source Files (.c)

If you pass the name of a source file to LoadExternalModule , the source file must be in the
project. The source file is automatically compiled and linked into the executable when you select
Create Standalone Executable File or Create Dynamic Link Library . For this reason you
must pass a simple filename to LoadExternalModule . If you are using an external
compiler, see the section, Using LoadExternalModule on Files in the Project.

If the source file is an instrument driver program that is not in the project and you link in
LabWindows/CVI, you have two alternatives.

• Add the instrument driver .c source to the project.

• Make sure the file is linked into the project by directly referencing it from the project.

Creating and Distributing Standalone Executables and DLLs Chapter 7

LabWindows/CVI Programmer Reference 7-16 © National Instruments Corporation

If the source file is an instrument program that is not in the project and you link in an external
compiler, you should create an object and keep it separate from the executable.

Rules for Accessing Other Files

The functions for accessing files (fopen , OpenFile , SetFileAttrs , DeleteFile , and
so on) interpret relative pathnames as being relative to the current working directory. Under
Windows, the initial current working directory normally is the directory of the executable.
However, if there is a different directory in the Working Directory field of the Properties dialog
box for the executable, then that is the initial current working directory. Under UNIX, the initial
current working directory is the directory from which you invoked the executable. You can
create an absolute path for a file in the executable directory by using GetProjectDir and
MakePathname .

Error Checking in your Standalone Executable or DLL

You typically enable debugging and Break on Library Errors while you develop your
application in LabWindows/CVI. With these utilities enabled, LabWindows/CVI checks for
programming errors in your source code, so you may have a tendency to be relaxed in your own
error checking.

However, when you create a standalone executable program or DLL, all of your source modules
are compiled. Compiled modules have debugging and Break on Library Errors disabled,
resulting in smaller and faster code. Thus, you must perform your own error checking when you
are creating a standalone executable program or DLL. Refer to Appendix B, Error Checking in
LabWindows/CVI, for details about performing error checking in your code.

© National Instruments Corporation 8-1 LabWindows/CVI Programmer Reference

Chapter 8
Distributing Libraries and Function Panels

This chapter describes how to distribute libraries, how to add libraries to an end-user’s Library
menu, and how to specify library dependencies.

How to Distribute Libraries

You can distribute libraries for other users to include in their Library menu. You must create a
function panel (.fp) for each library program file. For any library program file that is purely a
support file for the other files—in other words, it contains no user-callable function—you can
prevent it from appearing in the Library menu by creating a .fp file with no classes or function
panel windows.

Adding Libraries to User’s Library Menu

Normally, users must manually add libraries to the Library menu using the Library Options
command in the Project Window Options menu. However, you can insert your libraries into the
user's Library menu by modifying the user's cvi.ini file on Windows 3.1, .cvi.ini on
UNIX, or the Registry on Windows 95 and NT.

Under Windows 3.1 and UNIX, the modini program is included in the LabWindows/CVI bin
subdirectory for this purpose. A documentation file (modini.doc) is also included, as is the
source code.

Under Windows 95 and NT, the modreg program is included in the LabWindows/CVI bin
subdirectory for this purpose. A documentation file (modreg.doc) is also included, as is the
source code.

Assume that you install function panels for for two libraries in the following location.

c:\newlib\lib1.fp
c:\newlib\lib2.fp

To add the libraries to the user's Library menu under Windows 3.1 and UNIX, your modini
command file should be,

add Libraries LibraryFPFile "c:\newlib\lib1.fp"
add Libraries LibraryFPFile "c:\newlib\lib2.fp"

Distributing Libraries and Function Panels Chapter 8

LabWindows/CVI Programmer Reference 8-2 © National Instruments Corporation

After the library files are installed, the modini program should be run on the user's disk using
cvi.ini and the command file.

To add the libraries to the user's Library menu under Windows 95 and NT, your modreg
command file should be,

setkey [HKEY_CURRENT_USER\Software\National Instruments]
appendkey CVI\@latestVersion
add Libraries LibraryFPFile "c:\newlib\lib1.fp"
add Libraries LibraryFPFile "c:\newlib\lib2.fp"

After the library files are installed, the modreg program should be run on the user's disk using
the command file.

Caution: LabWindows/CVI must not be running when you use the modini or modreg
program to modify cvi.ini or the Registry. If LabWindows/CVI is running while
you use these programs, your changes will be lost.

Specifying Library Dependencies

When one library you are distributing library is dependent upon the other libraries in your set,
you can specify this dependency in the function panel file for the dependent library. When
loading the dependent library, LabWindows/CVI attempts to load the libraries upon which it
depends. Use the .FP Auto-Load List command in the Edit menu of the Function Tree Editor
window of the dependent library to list the .fp files of the libraries upon which it depends.
(Refer to the Instrument Driver Developers Guide, Chapter 2, Function Tree Editor, for details
on this command).

LabWindows/CVI can find the required libraries most easily when all of them are in the same
directory as the dependent library. When you cannot put them in the same directory, you must
add the directories in which the required libraries reside to the user's Instrument Directories list.
The user can manually enter this information using the Instrument Directories command in the
Project window Options menu. Alternatively, you can add to the Instrument Directories list by
editing cvi.ini file under Windows 3.1, .cvi.ini under UNIX, or the Registry under
Windows 95 and NT.

The recommended approach is for your installation program to add to cvi.ini (or .cvi.ini
or the Registry) automatically. Under Windows 3.1, the modini program is included in the
LabWindows/CVI bin subdirectory for this purpose. A documentation file (modini.doc) is
also included, as is the source code.

Under Windows 95 and NT, the modreg program is included in the LabWindows/CVI bin
subdirectory for this purpose. A documentation file (modreg.doc) is also included, as is the
source code.

Chapter 8 Distributing Libraries and Function Panels

© National Instruments Corporation 8-3 LabWindows/CVI Programmer Reference

Assume that you install two .fp files in the following location.

c:\newlib\liba.fp
c:\genlib\libb.fp

If liba depends on libb , you need to add the following path to the user's Instrument
Directories list.

c:\genlib

For LabWindows/CVI to be able to find the dependent file under Windows 3.1 and UNIX, your
modini command file should be,

add InstrumentDirectories InstrDir "c:\genlib"

After the library files are installed, the modini program should be run on the user's disk using
cvi.ini and the command file.

For LabWindows/CVI to be able to find the dependent file under Windows 95 and NT, your
modreg command file should be,

setkey [HKEY_CURRENT_USER\Software\National Instruments]
appendkey CVI\@latestVersion
add InstrumentDirectories InstrDir "c:\gewlib"

After the library files are installed, the modreg program should be run on the user's disk using
the command file.

Caution: LabWindows/CVI must not be running when you use the modini or modreg
program to modify cvi.ini or the Registry. If LabWindows/CVI is runing while
you use these programs, your changes will be lost.

© National Instruments Corporation A-1 LabWindows/CVI Programmer Reference

Appendix A
Errors and Warnings

This appendix contains an alphabetized list of compiler warnings, compiler errors, link errors,
DLL loading errors, and external module loading errors generated by LabWindows/CVI.

Table A-1. Error Messages

Error Message Type Error Comment

flag is valid only
with o, x, e, f, and
g specifiers.

Non-Fatal
Runtime Error

Ensure that the correct format specifier is
used, and that there are not extra characters
before the format specifier.

#elif missing
constant expression.

Compile Error Ensure that a conditional expression
follows #elif on the same line.

#if missing constant
expression.

Compile Error Ensure that a conditional expression
follows #if on the same line.

#ifdef expects an
identifier.

Compile Error Ensure that an identifier follows #ifdef
on the same line.

#ifndef expects an
identifier.

Compile Error The preprocessor conditional directive
#ifndef requires an identifier following
it on the same line. Make sure that an
identifier follows #ifndef on the same
line.

#line directive
cannot specify
line 0.

Compile Error The #line preprocessor directive requires
a non-zero (_0) line number value
specified.

#line directive
cannot specify line
greater than 32767.

Compile Error The #line preprocessor directive cannot
set the line greater than 32767.

#line directive
expects numeric
argument.

Compile Error The #line preprocessor directive requires
a line number value to be specified
following #line .

(continues)

Errors and Warnings Appendix A

LabWindows/CVI Programmer Reference A-2 © National Instruments Corporation

Table A-1. Error Messages (Continued)

Error Message Type Error Comment

at beginning of
macro definition.

Compile Error The ## preprocessing token was found at
the beginning of a macro definition. Ensure
that ## is preceded by a preprocessing
token.

at end of macro
definition.

Compile Error The ## preprocessing token was found at
the end of a macro definition. Ensure that
is followed by a preprocessing token(s).

, or) expected. Compile Error Ensure that the function macro argument
list is terminated with a) or that all of the
macro arguments are separated by , .

0 flag is not valid
with c, s, p, and n
modifiers.

Non-Fatal
Runtime Error

This error may be caused by the use of an
incorrect format specifier, or by the use of a
field width starting with 0.

NAME is a predefined
macro and cannot be
the subject of an
#undef.

Compile Error Make sure that the name specified for the
#undef preprocessor directive is not that
of a predefined macro.

NUMBER is an illegal
array size.

Compile Error Make sure that the size of the array
declaration is > 0.

NUMBER is an illegal
bit field size.

Compile Error Make sure that the size specified for the bit
field >= 0 and <= 32.

NUMBER line(s)
truncated. File set
to read-only.

Compile Error Occurs when reading in source or include
file. Lines are limited to 254 characters
(tabs count as 1).Use the editor in which the
file was created to split the line.

TYPE is an illegal
bit field type.

Compile Error Only int and unsigned types are
allowed for bit field declarations; ensure
that one of these types is being used.

(continues)

Appendix A Errors and Warnings

© National Instruments Corporation A-3 LabWindows/CVI Programmer Reference

Table A-1. Error Messages (Continued)

Error Message Type Error Comment

TYPE used as an
lvalue.

Compile
Warning

A type that cannot be modified is being
used as the target of an assignment.
Probably caused by an lvalue that is a
dereference of an object declared as
(void *).

Aborted load of
library FILE.

Link Error The library load operation was aborted. A
more specific diagnostic of the library load
error should have preceded this message.

Aborted load of
member NAME from
library FILE.

Link Error The library load of a member was aborted.
A more specific diagnostic of the library
load member error should have preceded
this message.

Aborted load of
object module FILE.

Link Error The object file load was aborted. A more
specific diagnostic of the object file load
error should have preceded this message.

Absolute segments not
supported: segment
name NAME.

PC/Windows
Load Error

OMF object file contains a segment to be
loaded at an absolute address.

Anonymous enum
declared inside
parameter list has
scope only for this
declaration.

Compile
Warning

The enumeration declared in the parameter
list has scope only within the parameter list.
As a result, its type is incompatible with all
other types. You should declare the
enumeration type before declaring function
types that use it.

Anonymous struct
declared inside
parameter list has
scope only for this
declaration

Compile
Warning

The structure declared in the parameter list
has scope only within the parameter list.
As a result, its type is incompatible with all
other types. You should declare the
structure type before declaring function
types that use it.

Anonymous union
declared inside
parameter list has
scope only for this
declaration.

Compile
Warning

The union declared in the parameter list has
scope only within the parameter list. As a
result, its type is incompatible with all other
types. You should declare the union type
before declaring function types that use it.

(continues)

Errors and Warnings Appendix A

LabWindows/CVI Programmer Reference A-4 © National Instruments Corporation

Table A-1. Error Messages (Continued)

Error Message Type Error Comment

Argument 4 must be 0
or 1.

Fatal Runtime
Error

The value of the argument to the library
function must be 0 or 1.

Argument NUMBER must
be 0, 1 or 2.

Fatal Runtime
Error

The value of the argument to the library
function must be 0, 1 or 2.

Argument must be a
function pointer to
the correct type of
callback function.

Non-fatal
Runtime Error

The argument to the function is not a
pointer to the expected type of callback
function.

Argument must be an
open stream.

Fatal Runtime
Error

The argument to the I/O library function
must be one of the standard streams
(stdin , stdout , stderr) or a stream
opened with the functions fopen() or
freopen() .

Argument must be
character.

Fatal Runtime
Error

The value of the argument to the library
function must be less than 256.

Array argument too
small.

Fatal Runtime
Error

The library function called requires an array
that is larger than the specified argument.
Check that the array was either declared or
allocated with sufficient elements for the
function call.

Array argument too
small (NUMBER bytes).
Argument must contain
at least NUMBER bytes
(NUMBER elements).

Fatal Runtime
Error

The library function called requires an array
that is larger than the specified argument.
Check that the array was either declared or
allocated with the number of elements
reported by this error message.

Array index (NUMBER)
too large (maximum:
NUMBER).

Non-Fatal
Runtime Error

The array was indexed past the last
element.

Assertion error:
EXPRESSION.

Fatal Runtime
Error

The value of the argument EXPRESSION
to the Standard C Library macro assert
is 0.

(continues)

Appendix A Errors and Warnings

© National Instruments Corporation A-5 LabWindows/CVI Programmer Reference

Table A-1. Error Messages (Continued)

Error Message Type Error Comment

Assignment between
TYPE and TYPE is
compiler-dependent.

Compile
Warning

Although allowed, caution is advised
because an assignment of an integer
type expression value to an enum type
target may not correspond to any known
enumeration constant for that enum type.
Depending on the enumeration, the size of
the enum type may be 1, 2 or 4 bytes and
therefore may be incapable of representing
all integer values.

Assignment of invalid
pointer value.

Non-Fatal
Runtime Error

The value being assigned to a pointer is an
invalid pointer value. Check the right hand
side of the assignment to determine if is the
result of a previous invalid pointer
operation.

Assignment of out-of-
bounds pointer:
NUMBER bytes before
start of array.

Non-Fatal
Runtime Error

The value being assigned to the pointer
refers to an invalid location, which is
NUMBER bytes before an array. The right
hand side of the assignment is probably the
result of previous illegal pointer arithmetic.

Assignment of out-of-
bounds pointer:
NUMBER bytes past
end of array.

Non-Fatal
Runtime Error

The value being assigned to the pointer
refers to an invalid location, which is
NUMBER bytes past the end of an array. The
right hand side of the assignment is
probably the result of previous illegal
pointer arithmetic.

(continues)

Errors and Warnings Appendix A

LabWindows/CVI Programmer Reference A-6 © National Instruments Corporation

Table A-1. Error Messages (Continued)

Error Message Type Error Comment

Assignment of pointer
to freed memory.

Non-Fatal
Runtime Error

The value being assigned to the pointer is
invalid because it refers to a location in
dynamic memory that was deallocated with
the function free . Once memory is freed,
all pointers into that block of memory
become invalid.

Assignment of
uninitialized pointer
value.

Non-Fatal
Runtime Error

The value being assigned to the pointer is
invalid because it was not initialized. The
right hand side of the assignment is
probably an uninitialized local variable or
an object in dynamic memory that was
allocated with malloc . Initialize local
variables and dynamic memory before you
use them. The function calloc both
allocates and initializes dynamic memory.

Assignment to const
identifier NAME.

Compile Error const declared variables or parameters are
treated as read only values that cannot be
modified once initialized; Ensure that the
identifier is not being modified by an
assignment operation.

Assignment to const
location.

Compile Error const declared variables or parameters are
treated as read only values that cannot be
modified once initialized; Ensure that the
lvalue (such as an array reference, or a
pointer dereference) specifying the const
location is not being modified by an
assignment operation.

Attempt to free
invalid pointer
expression.

Fatal Runtime
Error

The pointer value passed to the function
free is invalid. It is probably the result of
a previous invalid pointer operation.

Attempt to free
pointer to freed
memory.

Fatal Runtime
Error

The pointer value passed to the function
free refers to a location in dynamic
memory that was already deallocated.

(continues)

Appendix A Errors and Warnings

© National Instruments Corporation A-7 LabWindows/CVI Programmer Reference

Table A-1. Error Messages (Continued)

Error Message Type Error Comment

Attempt to free
uninitialized
pointer.

Fatal Runtime
Error

The pointer value passed to the function
free is invalid because it was not
initialized. It is probably an uninitialized
local variable. Initialize local variables
before you use them.

Attempt to read
beyond end of array.

Non-Fatal
Runtime Error

The source array was not large enough to
satisfy the destination specifiers.

Attempt to read
beyond end of string.

Non-Fatal
Runtime Error

The source string is not large enough to
satisfy the destination specifiers.

Attempt to realloc
invalid pointer
expression.

Fatal Runtime
Error

The pointer value passed to the function
realloc is invalid. It is probably the
result of a previous invalid pointer
operation.

Attempt to realloc
pointer to freed
memory.

Fatal Runtime
Error

The pointer value passed to the function
realloc refers to a location in dynamic
memory that was already deallocated.

Attempt to realloc
uninitialized
pointer.

Fatal Runtime
Error

The pointer value passed to the function
realloc is invalid because it was not
initialized. It is probably an uninitialized
local variable. Local variables must be
initialized before they are used.

Attempt to write
beyond end of array.

Non-Fatal
Runtime Error

The output array is smaller than required by
the given format specifiers and input
parameters.

Attempt to write
beyond end of string.

Non-Fatal
Runtime Error

The output string is smaller than required
by the given format specifiers and input
parameters.

b modifier must
precede o modifier.

Non-Fatal
Runtime Error

If both the b and o modifiers are present,
then the b modifier must precede the o
modifier.

Bad BSS section
encountered while
reading external
module: FILE.

Object Load
Error

The object module is corrupted or is of a
type that cannot be loaded into
LabWindows/CVI.

(continues)

Errors and Warnings Appendix A

LabWindows/CVI Programmer Reference A-8 © National Instruments Corporation

Table A-1. Error Messages (Continued)

Error Message Type Error Comment
Bad COFF Library
header.

Object Load
Error

The library file you are loading is either
corrupted or not in the COFF format.

Bad COFF Library
member header.

Object Load
Error

The COFF library you are loading contains
a module that is corrupted or in an invalid
format.

Bad location code:
OMF record position
NUMBER: OMF record
type NAME.

Link Error The object module has been corrupted or is
of a type that cannot be loaded into CVI.

Bad magic number
encountered while
reading external
module: FILE .

Link Error The object module has been corrupted or is
of a type that cannot be loaded into CVI.

Bad method: OMF
record position
NUMBER: OMF record
type NAME.

Link Error The object module has been corrupted or is
of a type that cannot be loaded into CVI.

Bad name: OMF record
position NUMBER: OMF
record type NAME.

Link Error The object module has been corrupted or is
of a type that cannot be loaded into CVI.

Bad OMF record at
position NUMBER: OMF
record type NAME.

PC/Windows
Load Error

OMF object file contains an unknown
object record. Make sure that the object file
is OMF and conforms to the 32 bit format
supported by LabWindows/CVI.

Bad relocation record
encountered while
reading external
module: FILE .

Link Error The object module has been corrupted or is
of a type that cannot be loaded into CVI.

Bad OMF record at
position NUMBER: OMF
record type NAME.

PC/Windows
Load Error

OMF object file contains an unknown
object record. Make sure that the object file
is OMF and conforms to the 32 bit format
supported by LabWindows/CVI.

Byte ordering is
invalid.

Non-Fatal
Runtime Error

The byte ordering specified by the o
modifier is not valid for the size of the
integer. The number of digits following the
o must match the size of the integer, and
the digits must fall in the range -1 to size of
the integer -1.

(continues)

Appendix A Errors and Warnings

© National Instruments Corporation A-9 LabWindows/CVI Programmer Reference

Table A-1. Error Messages (Continued)

Error Message Type Error Comment

c modifier valid only
with l format
specifier.

Non-Fatal
Runtime Error

The c modifier is only valid for the l format
specifier.

The callback
function, NAME,
specified in the UIR
file, does not have
required prototype.

Non-Fatal
Runtime Error

The function NAME was specified as a
callback function for an item in a user
interface resource file, but does not have the
correct type to be a callback function.
Callback functions must have one of the
callback types specified in the user interface
library header. The function will not be
called.

The callback
function, NAME,
specified in the UIR
file, is not a known
function.

Non-Fatal
Runtime Error

The function NAME was specified as a
callback function for an item in a user
interface resource file, but the function does
not exist.

Calling conventions
have no effect on
variables; calling
convention ignored.
The position of the
calling convention
modifier may be
incorrect.

Compile
Warning

A calling convention keyword was placed
before a variable name.

For function pointers, the calling convention
must be placed to the left of the “*”, e.g.

int (__cdecl * funptr)();

Cannot concatenate
wide and regular
string literals.

Compile
Warning

Make sure the string literals being
concatenated are either both wide string
literals or regular string literals.

Cannot free: memory
not allocated by
malloc() or calloc().

Fatal Runtime
Error

The pointer value passed to the function
free is invalid because it does not point to
dynamic memory allocated by malloc or
calloc . Only pointers obtained by a call to
one of these two functions can be deallocated
using free .

Cannot generate glue
for a function
without a prototype:
NAME.

Glue Code
Generation Error

In order to generate glue code for a DLL
function, the function must be specified by a
complete prototype. The types of the
parameters must be specified in the
prototype.

Cannot generate glue
for a static
function: FUNCTION.

Glue Code
Generation Error

Static functions in a DLL cannot be exported;
so it is useless to generate glue code for them.

(continues)

Errors and Warnings Appendix A

LabWindows/CVI Programmer Reference A-10 © National Instruments Corporation

Table A-1. Error Messages (Continued)

Error Message Type Error Comment

Cannot generate glue
for a variable
argument function:
FUNCTION.

Glue Code
Generation Error

You cannot use DLL functions that accept a
variable number of arguments with CVI.

Cannot initialize
undefined TYPE.

Compile Error An attempt was made to initialize a
declaration of an incomplete struct or
union type, such as a struct or union
type whose members have not yet been
specified. Ensure that the initialization
appears after the full struct or union
declaration.

Cannot link variable
NAME to import
library without
__import keyword in
declaration.

Link Error A variable that you have declared as
extern is defined in a DLL import
library, but you did include the __import
qualifier in the declaration.

Cannot link variable
NAME to import
library without
declspec(dllimport)
keyword in
declaration.

Link Error A variable that you have declared as
extern is defined in a DLL import
library, but you did include the
declspec(dllimport) qualifier in the
declaration.

Case label must be a
constant integer
expression.

Compile Error Case labels must be known integer values at
compile time; make sure the case label
conforms to the requirements of a constant
integer expression.

Cast from TYPE to
TYPE is illegal in
constant expressions.

Compile Error Constant expression values must be
determinable at compile time; make sure
that the cast operation does not involve a
pointer type as storage has not yet been
allocated at compile time.

Cast from TYPE to
TYPE is illegal.

Compiler Error ANSI C does not allow a cast between the
two types.

(continues)

Appendix A Errors and Warnings

© National Instruments Corporation A-11 LabWindows/CVI Programmer Reference

Table A-1. Error Messages (Continued)

Error Message Type Error Comment

COFF Name too long. Object Load
Error

The COFF object or library you are loading
contains a symbol name that is longer than
the maximum legal length.

Comparison involving
null pointer.

Non-Fatal
Runtime Error

One of the pointer expressions in the
comparison has the value NULL. Both
expressions in pointer comparisons must
point into the same array object.

Comparison involving
uninitialized
pointer.

Non-Fatal
Runtime Error

One of the pointer expressions in the
comparison is invalid because it was not
initialized.

Comparison of
pointers to different
objects.

Non-Fatal
Runtime Error

The pointer expressions in the comparison
point to two distinct objects. Both
expressions in pointer comparisons must
point into the same array object.

Comparison of
pointers to freed
memory.

Non-Fatal
Runtime Error

One of the pointer expressions in the
comparison is invalid because it refers to a
location in dynamic memory that was
deallocated with the function free. Once
memory is freed, all pointers into that block
of memory become invalid.

Compound statements
nested too deeply.

Compile Error The program has exceeded the compiler
limitations on the number of nested
compound statements; reduce the depth of
the nested compound statements in the
program.

(continues)

Errors and Warnings Appendix A

LabWindows/CVI Programmer Reference A-12 © National Instruments Corporation

Table A-1. Error Messages (Continued)

Error Message Type Error Comment

Conditional inclusion
nested too deeply.

Compile Error The program has exceeded the compiler
limitations on the number of nested
conditional preprocessor directives; reduce
the depth of the conditional preprocessor
directives nested in the program.

Conflicting GRPDEFs:
group name NAME.

Link Error The object module is probably corrupted.

Conflicting argument
declarations for
function FUNCTION.

Compile Error The arguments of the named function
prototype declaration do not match those
for the old-style function definition of the
same name; ensure that the function
declaration matches that of the old-style
function definition. A better course is to
change the old-style function definition to a
new-style definition that matches the
function prototype declaration.

Constant expression
must be integer.

Compile Error A constant integer expression is expected in
this context. Ensure the expression
conforms to the semantics of a constant
expression that computes an integer value.

Conversion from TYPE
to TYPE is compiler-
dependent.

Compile
Warning

Converting between a function pointer and
other types of pointers is discouraged
because functions should not be accessed as
data and data cannot be executed as
functions.

Could not allocate
stack space. Try
decreasing the
Maximum stack size
option in the Run
Options dialog.

Fatal Runtime
Error

There is insufficient memory to allocate the
Maximum Stack Size you have specified.
LabWindows/CVI allocates the maximum
size on the stack at the beginning of
execution.

(continues)

Appendix A Errors and Warnings

© National Instruments Corporation A-13 LabWindows/CVI Programmer Reference

Table A-1. Error Messages (Continued)

Error Message Type Error Comment

Could not find the
DLL header file
HEADER FILE.

Glue Code
Generation Error

LabWindows/CVI could not find the file
containing the prototypes for the functions
in the DLL. When generating glue code,
Ensure that correct file name is specified.
When loading a DLL, Ensure that a header
file with the same base name as the DLL
exists.

d modifier not valid
in
Fmt/FmtOut/FmtFile.

Non-Fatal
Runtime Error

The d modifier cannot be used in Fmt,
FmtOut , or FmtFile .

Declaration of NAME
does not match
previous declaration
at POSITION.

A variable or function has been declared
twice, and its type in the first declaration
does not match its type in the second
declaration.

Declared parameter
NAME is missing.

Compile Error A parameter declaration to an old-style
function definition is missing or was not
declared in the function parameter list;
Ensure that the names in the old-style
function definition have corresponding
parameter declarations. A better course is
to convert the old-style function definition
to the new-style function definition
requiring prototypes.

"defined" expects an
identifier argument.

Compile Error The preprocessor defined() operation
requires a single identifier argument;
Ensure that an identifier is being used and
not an expression.

Dereference of a
NUMBER byte object
where only NUMBER
bytes exist.

Fatal Runtime
Error

The pointer expression being dereferenced
points to an object that is smaller than the
type of the dereference. For example, if an
int pointer points to an object of type
char , the pointer cannot be dereferenced
because it points to only one byte, whereas
four bytes are required for an int .

(continues)

Errors and Warnings Appendix A

LabWindows/CVI Programmer Reference A-14 © National Instruments Corporation

Table A-1. Error Messages (Continued)

Error Message Type Error Comment

Dereference of data
pointer used as a
function.

Fatal Runtime
Error

A pointer to data was converted to a
function pointer and dereferenced. Data
can only be examined or modified, and
cannot be executed as a function.

Dereference of
function pointer used
as data.

Fatal Runtime
Error

A function pointer was converted to a non-
function pointer and dereferenced.
Functions can only be executed, and cannot
be accessed as data.

Dereference of
invalid pointer
expression.

Fatal Runtime
Error

The pointer expression being dereferenced
is invalid. It is probably the result of a
previous invalid pointer operation.

Dereference of null
pointer.

Fatal Runtime
Error

The pointer expression being dereferenced
has the value NULL and cannot be
dereferenced.

Dereference of out-
of-bounds pointer:
NUMBER bytes (NUMBER
elements) before
start of array.

Fatal Runtime
Error

The pointer expression being dereferenced
is invalid because it refers to a location that
is before the start of an array. The number
of bytes and the number of array elements
in the array is given. The expression is
probably the result of previous illegal
pointer arithmetic.

Dereference of out-
of-bounds pointer:
NUMBER bytes (NUMBER
elements) past end of
array.

Fatal Runtime
Error

The pointer expression being dereferenced
is invalid because it refers to a location that
is past the end of an array. The number of
bytes and the number of array elements past
the end of the array is given. The
expression is probably the result of
previous illegal pointer arithmetic.

(continues)

Appendix A Errors and Warnings

© National Instruments Corporation A-15 LabWindows/CVI Programmer Reference

Table A-1. Error Messages (Continued)

Error Message Type Error Comment

Dereference of
pointer to freed
memory.

Fatal Runtime
Error

The pointer expression being dereferenced
is invalid because it refers to a location in
dynamic memory that was deallocated with
the function free . Once memory is freed,
all pointers into that block of memory
become invalid.

Dereference of
unaligned pointer.

Fatal Runtime
Error [UNIX
only]

The pointer expression being dereferenced
is invalid because it points to an address
that does not have the proper alignment for
the type of the dereferenced object.
SPARCstation architecture requires that 16-
bit objects be halfword aligned, that 32-bit
objects be word aligned, and that 64-bit
objects be doubleword aligned.

Dereference of
uninitialized
pointer.

Fatal Runtime
Error

The pointer expression being dereferenced
is invalid because it was not initialized. It
is probably an uninitialized local variable.
Local variables must be initialized before
they are used.

Duplicate case label
NAME.

Compile Error A case label value appears more than once
in the switch statement. Eliminate any
duplicate case label values in the switch
statement.

Duplicate definition
for NAME previously
declared at POSITION.

Compile Error A previously defined parameter name has
been redeclared; eliminate one of the
parameter declarations.

Duplicate field name
NAME in TYPE.

Compile Error The member name of the struct or
union type has already been declared.
Eliminate one of the member declarations
from the struct or union type declaration.

Dynamic memory is
corrupt.

Fatal Runtime
Error

LabWindows/CVI encountered corrupt data
while allocating or freeing dynamic
memory.

Empty declaration. Compile Error
or Warning

No object or type is declared. It is an error
if the empty declaration appears in the
context of an old-style parameter
declaration.

(continues)

Errors and Warnings Appendix A

LabWindows/CVI Programmer Reference A-16 © National Instruments Corporation

Table A-1. Error Messages (Continued)

Error Message Type Error Comment
Elf library is out of
date.

Object Load
Error

CVI expects a more recent version of the
shared library (libelf.so) that it uses to
load ELF objects. As a result,
LabWindows/CVI is unable to read or write
object and library files.

'enum NAME' declared
inside parameter list
has scope only for
this declaration.

Compile
Warning

The enumeration declared in the parameter
list has scope only within the parameter list.
As a result, its type is incompatible with all
other types. You should declare the
enumeration type before declaring function
types that use it.

Error at or near
character NUMBER in
the format string:
STRING.

Non-Fatal
Runtime Error

There is an error in the format string at
index NUMBER. NUMBER is 1 based.

Error in Elf Library
encountered while
reading external
module: NAME.

Object Load
Error

The object module is corrupted or is of a
type that cannot be loaded by
LabWindows/CVI.

Error: compiling FILE
for DLL exports.

DLL Import
Library Creation
Error.

When creating a DLL using the Include File
method for specifying exported symbols, an
error was encountered compiling the
include file.

Error: Incompatible
type for function or
variable NAME in
header FILE used to
specify exports.

DLL Link Error When creating a DLL using the Include File
method for specifying exported symbols,
the type of the symbol in the include file
does not match the type in the source file.

Expecting an
enumerator
identifier.

Compile Error An enumeration constant identifier was
expected after the opening { in an enum
type declaration.

Expecting an
identifier.

Compile Error An identifier was expected in the current
syntactic context. Check the syntax of the
declaration, statement, or preprocessor
directive.

Expecting integer
constant, push or
pop.

Compile Error The pack pragma requires at least one
parameter.

Extra default label. Compile Error A default label has already appeared for
this switch statement. Eliminate the
extraneous default label.

(continues)

Appendix A Errors and Warnings

© National Instruments Corporation A-17 LabWindows/CVI Programmer Reference

Table A-1. Error Messages (Continued)

Error Message Type Error Comment
Extraneous 0-width
bit field TYPE NAME
ignored.

Compile
Warning

The named bit field has no width and
therefore has no storage allocated to it.

Extraneous formal
parameter
specification.

Compile Error This error occurs when the compiler is
processing what it assumes to be an old-
style function declaration and encounters
what it assumes to be the function's
parameter names. If this is an old-style
function declaration, make sure that , if this
is an old-style function declaration, the
parameter names only appear in the
function definition and not in any
declaration of that function. If this was
intended to be a new-style function
declaration (prototype), then probably the
identifier that is assumed to be a parameter
name by the compiler probably was
intended to be a typedef name. Make
sure that the identifier has been previously
declared as a typedef .

Extraneous identifier
NAME.

Compile Error An identifier appears in a context where a
type name is expected, such as in a cast
operation or as the operand of sizeof() .
A type name is syntactically a declaration
for a function or an object of that type that
omits the identifier.

Extraneous return
value.

Compile Error The return statement appears in a void
function and therefore no return value is
necessary; eliminate the return expression
from the return statement.

Failed to load DLL
FILE .

Link Error LabWindows/CVI could not find the DLL.
Ensure that it is in one of the default
directories searched by Microsoft
Windows, or that it includes a complete
path name.

Failed to open
external module.

Object Load
Error

An external module could not be opened for
loading. Check that the external module has
read access and that it has not inadvertently
been renamed or deleted.

(continues)

Errors and Warnings Appendix A

LabWindows/CVI Programmer Reference A-18 © National Instruments Corporation

Table A-1. Error Messages (Continued)

Error Message Type Error Comment

Field name expected. Compile Error An identifier is syntactically expected
following a . or -> .

Field name missing. Compile Error The identifier is missing from a member
(field) declaration in a struct or union
type declaration. Make sure that the
member type specifier is followed by an
identifier.

Format string integer
is too big.

Non-Fatal
Runtime Error

An integer used in the format string is too
large.

Found TYPE expected a
function.

Compile Error
or Warning

In an C expression, the name of a function
or pointer to function was expected to
precede the (. In a #pragma line, the
name of a function was expected after the
pragma type.

Function definitions
are not allowed in
the interactive
window.

Compile Error A function definition cannot appear in the
interactive window; move the function
definition to a program window and call it
from the interactive window.

Function FUNCTION:
(STRING == NUMBER).

Non-Fatal
Runtime Error

The library function could not perform its
task. The integer NUMBER is either the
function return value or the value of a
global variable that explains why the
function failed. See the library function
reference material for more information
about the error.

Function FUNCTION has
an unsupported return
type size.

Glue Code
Generation Error

The return type of the function is not
supported by the glue code generation, or
the DLL loading facilities.

Function requires
extra code to handle
Callbacks: FUNCTION.

Glue Code
Generation Error

The automatic glue code generation facility
cannot generate complete code for this
function because one of its parameters is a
function pointer or it returns a function
pointer. Such functions need to be edited to
add the code to thunk function pointers.

(continues)

Appendix A Errors and Warnings

© National Instruments Corporation A-19 LabWindows/CVI Programmer Reference

Table A-1. Error Messages (Continued

Error Message Type Error Comment

h modifier is only
valid with d, i, n,
o, u, and x
specifiers.

Non-Fatal
Runtime Error

The h modifier can only be used with
integer format specifiers.

Header name literal
too long.

Compile Error Header name length exceeds
implementation limitations. Check that
header name is properly terminated with a
> or a " , or shorten string literal.

Ill-formed constant
integer expression.

Compile Error A constant integer expression appearing in
a preprocessor directive is syntactically
invalid. Check the expression for trailing
tokens.

Ill-formed
hexadecimal escape
sequence \x CHAR.

Compile Error Check that a hexadecimal character
([0-9a-fA-F]) follows the \x escape
sequence introduction.

Ill-formed
hexadecimal escape
sequence.

Compile Error Check that a hexadecimal character
([0-9a-fA-F]) follows the \x escape
sequence introduction.

Illegal argument(s)
to library function.

Fatal Runtime
Error

One or more of the arguments to the library
function are invalid. Refer to the library
documentation for the function.

Illegal case label. Compile Error A case label appears outside the context of
a switch statement. Remove the case label.

Illegal character
CHAR.

Compile Error A character or character escape sequence
that is outside the set of the legal character
set for an ANSI C file appears in a context
other than a character string or character
literal.

Illegal continue
statement.

Compile Error A continue statement appears outside a loop
statement. Remove the continue statement.

Illegal default
label.

Compile Error A default label appears outside the
context of a switch statement. Remove the
default label.

 (continues)

Errors and Warnings Appendix A

LabWindows/CVI Programmer Reference A-20 © National Instruments Corporation

Table A-1. Error Messages (Continued)

Error Message Type Error Comment

Illegal expression. Compile Error A token was encountered while parsing an
expression where an identifier, string literal,
integer constant, floating constant, or (was
expected.

Illegal extern
definition of NAME;
all interactive
window variable
definitions must be
static.

Compile Error No interactive window definitions may be
visible outside the scope of the Interactive
window. You cannot initialize external
objects in the Interactive window.

Illegal formal
parameter types.

Compile Error A parameter type of void appears in a
function prototype declaration that has
more than one argument; remove the void
parameter type or change the function
prototype so that it contains only the single
void parameter type.

Illegal header name;
#include expects
"FILE" or < FILE> .

Compile Error An unexpected character follows an
#include where a header file name of the
form "FILE " or <FILE> is expected. It is
also possible that the header file name
beginning quote character is different than
the expected closing quote character, such
as <FILE ".

Illegal
initialization for
NAME.

Compile Error Ensure that the initialization is not for a
function declaration rather than a pointer to
a function.

Illegal
initialization for
parameter.

Compile Error Parameter declarations cannot have default
value initializations in ANSI C. Eliminate
the initialization.

(continues)

Appendix A Errors and Warnings

© National Instruments Corporation A-21 LabWindows/CVI Programmer Reference

Table A-1. Error Messages (Continued)

Error Message Type Error Comment

Illegal
initialization for
parameter NAME.

Compile Error Parameter declarations cannot have default
value initializations in ANSI C. Eliminate
the initialization.

Illegal
initialization of
extern NAME.

Compile Error An illegal attempt to initialize an extern
declaration that appears in a local scope was
made. Eliminate the initialization.

Illegal return type
TYPE.

Compile Error A function was declared with an illegal return
type or a return statement expression type is
not the same as the return type of the function
in which it appears. If the diagnostic is for a
function declaration, check that the return
type is not an array type or a function type. If
the diagnostic is for a return statement, the
containing function was probably declared
void and requires no expression for a return
statement.

Illegal return type;
found TYPE expected
TYPE.

Compile Error A return statement expression type is not the
same as the return type of the function in
which it appears. Check that the type of the
return expression is consistent (assignment
compatible) with the function return type.

Illegal separator
character or illegal
position of
separator character.

Non-Fatal
Runtime Error

Either the separation characters < and > were
not present in the format string, or they were
in the wrong place.

Illegal source
filename specified
for #line; s-char-
sequence expected.

Compile Error The only token expected to follow the line
number specification in a #line
preprocessor directive is an optional string
literal specifying a source file name.
Alternatively, a sequence of tokens may
follow the #line token as long as once
macro expansion on the containing source
line is performed it conforms to one of the
two allowable forms of #line preprocessor
directives: #line line-number-digit-
sequence

#line line-number-digit-
sequence "filename"

(continues)

Errors and Warnings Appendix A

LabWindows/CVI Programmer Reference A-22 © National Instruments Corporation

Table A-1. Error Messages (Continued)

Error Message Type Error Comment
Illegal statement
termination.

Compile Error During compilation of a sequence of
statements, a token was encountered that was
expected either to begin a new statement, begin
an else clause of an if statement, be a statement
label, be a case label, or terminate a compound
statement, such as } . Depending on the context
of the location of where the diagnostic was
issued, check that the statement syntax is
correct for the cases listed above.

Illegal type const
TYPE.

Compile Error A qualified type specification (that is, one
containing the keyword const or
volatile) is specified with the same
qualifier more than once (such as, const
const int). Ensure that the const and
volatile qualifiers are not used more than
once each in the same type.

Illegal type for
symbol 'DllMain':
TYPE.

Compile Error The function DllMain does not conform to
the accepted prototype.
int__stdcall DllMain

(HINSTANCE hinstDLL,
 DWORD fdwReason,
 LPVOID lpvReserved);

Illegal type for
symbol 'WinMain':
TYPE.

Compile Error The function WinMain does not conform to
the accepted prototype.
int__stdcall WinMain

(HINSTANCE hInstance,
 HINSTANCE hPrevInstance,
 LPSTR lpszCmdLine,
 int nCmdShow);

Illegal type array of
TYPE.

Compile Error An attempt to declare an array of function type
was made. Probably the declaration was
intended to be an array of pointer to function
type instead.

Illegal type volatile
TYPE.

Compile Error A qualified type specification (that is, one
containing the keyword const or
volatile) is being specified with the same
qualifier more than once (such as const
const int). Ensure that the const and
volatile qualifiers are not used more than
once each in the same type.

(continues)

Appendix A Errors and Warnings

© National Instruments Corporation A-23 LabWindows/CVI Programmer Reference

Table A-1. Error Messages (Continued)

Error Message Type Error Comment

Illegal use of type
name NAME.

Compile Error A typedef name was used in the context
of a primary expression. If a type cast was
intended, ensure that the typedef name is
parenthesized. Otherwise a macro name,
enumeration constant, variable name, or
function name was intended.

Illegal value matched
to asterisk.

Non-Fatal
Runtime Error

An integer argument matched to an asterisk
(*) in the format string has an invalid value
given the context in which it appears.

Illegal variable
declaration; only
static and extern
variable classes are
valid in the
interactive window.

Compile Error Change the variable declaration to be either
static or extern .

Import Variables
cannot be used in
global variable
initialization.

Compile Error A global variable marked as __import or
declspec(dllimport) is being used
in an initializer of another variable.

Include files nested
too deeply.

Compile Error The number of nested #include files
exceeds compiler limits. Reduce the
number of nested #include preprocessor
directives.

Inconsistent linkage
for NAME previously
declared at POSITION.

Compile Error The current declaration of the identifier is
inconsistent with a previous declaration of
the same identifier with regard to linkage.
Check that all declarations of the identifier
that are intended to be static do not
conflict with declarations without the
static keyword in the same scope.

Inconsistent type
declarations for
external symbol NAME
in modules FILE1 and
FILE2.

Link Error The types declared for two or more external
symbols of the name are not the same.
Check each program file containing an
external declaration of the symbol for type
consistency.

(continues)

Errors and Warnings Appendix A

LabWindows/CVI Programmer Reference A-24 © National Instruments Corporation

Table A-1. Error Messages (Continued)

Error Message Type Error Comment

Initializer exceeds
bit-field width.

Compile
Warning

The number of bits needed to represent the
initialization value of a bit-field exceeds its
declared width. The initialization value is
truncated to fit the bit-field. The
initialization value should be smaller or the
bit-field declaration made wider.

Initializer must be
constant.

Compile Error The initializer must be an expression that
conforms to the semantics for a constant
expression.

InitVXIlibrary must
be called before
other VXI functions.

Fatal Runtime
Error

The function InitVXIlibrary must be
called before other VXI functions.

Insufficient number
of arguments to
FUNCTION.

Compile Error The function expects more arguments than
it is being called with. Check the function
declaration for the number of parameters
declared.

Insufficient system
memory for
Interactive Window

Link Error There is not enough memory to run the
interactive window.

Insufficient system
memory for project.

Link Error There is not enough memory to link the
project.

Insufficient user
data memory for
project.

Link Error There is not enough memory to link the
project.

Invalid hexadecimal
constant.

Compile Error A token assumed to be a hexadecimal
constant is badly formed. Check that token
conforms to syntax for hexadecimal
constants, especially that a valid
hexadecimal digit follows the 0x or 0X
prefix.

(continues)

Appendix A Errors and Warnings

© National Instruments Corporation A-25 LabWindows/CVI Programmer Reference

Table A-1. Error Messages (Continued)

Error Message Type Error Comment

Invalid
initialization type;
found TYPE expected
TYPE.

Compile Error The expression initializing the object
declaration is type incompatible with the
object. Check that the initialization
expression is assignment compatible with
the object type. Ensure that all constituent
values of an aggregate expression match the
corresponding positional types of any
aggregate type, such as member types of a
struct or union type.

Invalid octal
constant.

Compile Error A token assumed to be an octal constant is
badly formed. Check that token conforms
to syntax for octal constants especially that
a valid octal digits follow the leading 0
prefix.

Invalid operand of
unary &; NAME is
declared register.

Compile Error It is illegal for the address to be taken (&
prefix operator) of an object declared to be
of register class. Remove the
register keyword from the object
declaration if the address operator will be
applied to it.

Invalid pointer
argument to library
function.

Fatal Runtime
Error

The pointer expression being passed to the
library function is invalid. It is probably
the result of a previous invalid pointer
operation.

Invalid size for a
real.

Non-Fatal
Runtime Error

The only valid sizes (specified with the b
modifier) for the f (real) specifier are 4 and
8.

Invalid size for an
integer.

Non-Fatal
Runtime Error

The valid sizes (specified with the b
modifier) for the i , d, x , o, and c modifiers
are 1 to 4.

(continues)

Errors and Warnings Appendix A

LabWindows/CVI Programmer Reference A-26 © National Instruments Corporation

Table A-1. Error Messages (Continued)

Error Message Type Error Comment

Invalid storage
class.

Compile Error The only allowable explicit storage class
specifier for a function declaration that has
block scope is extern .

Invalid struct field
declarations.

Compile Error An invalid token was encountered while
processing a struct or union type
declaration. A token beginning a member
type specifier was expected where a type
specifier is one of void , char , short ,
int , long , float , double , signed ,
unsigned , <struct-or-union-
specifier >, <enum-specifier >, or
<typedef-name >.

Invalid type argument
TYPE to sizeof.

Compile Error The sizeof operator was applied to a
function type or incomplete struct or union
type. A function type has no size and the
size of an incomplete struct or union type is
not known before its full declaration.

Invalid type
specification.

Compile Error The combination of type specifiers is
incompatible. The type specifier short
may only be used in combination with int .
The type specifier long may only be used
in combination with int and double .
The type specifiers signed and
unsigned may only be used in
combination with one of the basic integer
type (char , short , int , long).

(continues)

Appendix A Errors and Warnings

© National Instruments Corporation A-27 LabWindows/CVI Programmer Reference

Table A-1. Error Messages (Continued)

Error Message Type Error Comment

Invalid union field
declarations.

Compile Error An invalid token was encountered while
processing a struct or union type
declaration. A token beginning a member
type specifier was expected where a type
specifier is one of void , char , short ,
int , long , float , double , signed ,
unsigned , <struct-or-union-
specifier >, <enum-specifier >, or
<typedef-name >.

Invalid use of TOKEN. Compile Error This error occurs during compilation of a
type specification. The specified TOKEN is
not valid in the context of the type specifier.
Two common errors are use of a storage
class other than register for a parameter
declaration and using the storage class
register for a global object declaration.

l format specifier
not valid in
Fmt/FmtOut/FmtFile.

Non-Fatal
Runtime Error

The l format specifier is only used in
Scan , ScanOut , and ScanFile .

l modifier is only
valid with d, i, n,
o, u, and x
specifiers.

Non-Fatal
Runtime Error

The l format specifier is only valid for
integer format specifiers.

L modifier is only
valid with e, f, and
g specifiers.

Non-Fatal
Runtime Error

The L modifier, which specifies that the
argument is a long double, can only be used
in the floating point formats.

l modifier is only
valid with e, f, g,
d, i, n, o, u, and x
specifiers.

Non-Fatal
Runtime Error

The l format specifier is only valid for
integer and real format specifiers.

Left operand of ->
has incompatible type
TYPE.

Compile Error The left operand of the -> dereference
operation is either not a pointer to struct
or union type or it is not a pointer type at
all.

(continues)

Errors and Warnings Appendix A

LabWindows/CVI Programmer Reference A-28 © National Instruments Corporation

Table A-1. Error Messages (Continued)

Error Message Type Error Comment
Left operand of . has
incompatible type
TYPE.

Compile Error The left operand of the . member selection
operation must be a struct or union
type.

Library function
error (STRING ==
NUMBER).

Non-Fatal
Runtime Error

The library function could not perform its
task. The integer NUMBER is either the
function return value or the value of a
global variable that explains why the
function failed. See the library function
reference material for more information
about the error.

Lvalue required. Compile Error An lvalue is required in this context; ensure
that the expression conforms to the
semantics of an lvalue.

Macro expansion too
large.

Compile Error The macro expansion has exceeded the
compiler implementation size limitation.

Macro parameter must
follow # operator.

Compile Error The # operator requires that a macro
parameter immediately follow it in a macro
replacement list.

Matching push not
encountered or
already popped.

Compile Error A pack pragma used a named pop that does
not balance with push of the same name.

Missing { in
initialization of
TYPE.

Compile Error The initialization of a struct , union , or
array type, is missing a starting { for an
aggregate initialization value.

Missing #endif Compile Error The #if , #ifdef preprocessor directive
must have a corresponding #endif in the
same source file.

Missing #include file
name; #include
expects "FILE" or
<FILE> .

Compile Error No include file name follows the
#include preprocessor directive. Ensure
that there is a filename of the correct form
following #include or that any macro
following #include expands into the
correct form for an include file name.

Missing '. Compile Error The termination single quote character ' is
missing from a character or wide character
literal.

Missing CHAR. Compile Error Check for unterminated string or character
literal.

(continues)

Appendix A Errors and Warnings

© National Instruments Corporation A-29 LabWindows/CVI Programmer Reference

Table A-1. Error Messages (Continued)

Error Message Type Error Comment

Missing argument to
variable argument
function.

Fatal Runtime
Error

The variable argument function required at
least one argument beyond the last formal
parameter.

Missing array size. Compile Error Attempting to define a block scope object
or type that is an array which has an
element type that is an incomplete array
type, such as an array with unspecified size.
The array element type must be a complete
array type, such as an array type with
specified size.

Missing format string
integer.

Non-Fatal
Runtime Error

The integer corresponding to an asterisk in
a format string is missing. This may be
caused by incorrect ordering of the
arguments. This integer must precede the
actual argument.

Missing identifier. Compile Error An identifier specifying the object name is
missing from the object declaration. Ensure
that the object type specifier is followed by
an identifier.

Missing label in
goto.

Compile Error The goto statement is missing an identifier
label.

Missing parameter
name to function
FUNCTION.

Compile Error The parameter list of the function definition
is missing an identifier for one of its
parameter declarations. All parameter
declarations for a function definition must
include an identifier except for the special
case of a parameter list consisting of a
single parameter of type void , in which
there should not be an identifier.

Missing parameter
type.

Compile Error The type specifier is missing from a
parameter declaration in a new-style
(prototype) function declaration. Ensure
that the function declaration is not mixing
old-style parameter declarations with new-
style (prototype) declarations.

(continues)

Errors and Warnings Appendix A

LabWindows/CVI Programmer Reference A-30 © National Instruments Corporation

Table A-1. Error Messages (Continued)

Error Message Type Error Comment

Missing prototype. Compile Error The function declaration or call is for a
function without prototype declaration
information. The diagnostic is issued as
indicated by the Require Function
Prototypes compiler option.

Missing return value. Fatal Runtime
Error

The function does not return a value,
although it was declared with a return type.
If the function was not intended to return a
value, then it should be declared as a void
function. Otherwise, it must have a
return statement to return a value.

Missing return value. Compile
Warning

The non-void function does not return a
value. Add a return statement with an
expression of the function return type. This
diagnostic is issued as under the control of
the Require return value for non-void
functions compiler preference.

Missing right bracket
(]).

Fatal Runtime
Error

The format string has mismatched brackets.

Missing struct tag. Compile Error A tag name is missing from an incomplete
struct or union declaration.

Missing terminating
null in string
argument.

Fatal Runtime
Error

The library function expects a string
argument, but the passed argument points
to an array of characters that is not null
terminated.

Missing union tag. Compile Error A tag name is missing from an incomplete
struct or union declaration.

Missing Watch
Expression.

Watchpoint
Error

The watch expression was not specified in
the watch dialog box.

Multiply defined
symbol NAME in
modules FILE1 and
FILE2 .

Link Error There exists more that one definition for
NAME among the elements of the project
being linked.

naked functions are
not supported.

Compile Error LabWindows/CVI does not work with the
naked keyword.

(continues)

Appendix A Errors and Warnings

© National Instruments Corporation A-31 LabWindows/CVI Programmer Reference

Table A-1. Error Messages (Continued)

Error Message Type Error Comment

No data relocation
section found for
external module:
FILE .

Link Error The external object module does not
contain the relocation information
necessary to link it in with the rest of the
project. Ensure that the external object
module being loaded is not an already
linked executable.

No data section found
for external module:
FILE .

Link Error The external object module does not
contain the initialized data necessary to link
it in with the rest of the project. Check how
the external object file was built.

No pack settings
currently pushed.

Compile Error A pack pragma used a pop when there were
no pushes.

No symbol table found
for external module:
FILE .

Link Error The external object module does not
contain the symbol table information
necessary to link it in with the rest of the
project. Check how the external object file
was built.

No text relocation
section found for
external module:
FILE .

Link Error The external object module does not
contain the relocation information
necessary to link it in with the rest of the
project. Ensure that the external object
module being loaded is not an already
linked executable.

No text section found
for external module:
FILE .

Link Error The external object module does not
contain the initialized instruction data
necessary to link it in with the rest of the
project. Check how the external object file
was built.

(continues)

Errors and Warnings Appendix A

LabWindows/CVI Programmer Reference A-32 © National Instruments Corporation

Table A-1. Error Messages (Continued)

Error Message Type Error Comment

Non-terminated
address list.

Fatal Runtime
Error

An attempt was made to pass an address
list array not terminated with a -1 to a
GPIB-488.2 function that expects the array
to be terminated with a -1.

Not enough
parameters.

Non-Fatal
Runtime Error

The number of arguments expected by the
format string is more than the number of
arguments passed in.

Not enough space for
casting expression to
TYPE.

Non-Fatal
Runtime Error

The block of memory obtained from
malloc or calloc is not large enough
for a single object of type TYPE and cannot
be cast to that type.

Null Pointer. Fatal Runtime
Error

The pointer expression being passed to the
library function has the value NULL, which
is not a valid value for the function.

Null pointer argument
to library function.

Fatal Runtime
Error

The pointer expression being passed to the
library function has the value NULL, which
is not a valid value for the function.

Number of arguments
exceed the maximum
supported.

Non-Fatal
Runtime Error

The number of arguments exceeds the
maximum supported by the formatting
functions.

Number of points is
too large for current
waveform buffer.

Fatal Runtime
Error

This message appears when the
NumberofPoints parameter of a data
acquisition waveform generation function is
larger than the NumberofPoints
parameter to the function which set up the
waveform buffer.

(continues)

Appendix A Errors and Warnings

© National Instruments Corporation A-33 LabWindows/CVI Programmer Reference

Table A-1. Error Messages (Continued)

Error Message Type Error Comment

Object module
contains unsupported
FAR pointers .

Object Load
Error

The external object module contains FAR
pointers, which you cannot implement in
LabWindows/CVI.

One of the arguments
to FUNCTION has an
unsupported size.

Glue Code
Generation Error

The type of one of the function's arguments
is not supported by the glue code
generation, or the DLL loading facilities.

Only object
modules produced
by WATCOM C 386
fully supported.

Link Error The external object module contains
unrecognized or unsupported OMF records.
Ensure that the object file was compiled
with a WATCOM C 386 compiler with the
recommended options.

Operands of ‘=‘ have
incompatible calling
conventions.

Compile Error A function pointer is being assigned an
expression that does not match its calling
convention.

Operands of [one from
set of binary
operators] have
illegal types TYPE
and TYPE.

Compile Error The types of the two operands to the
binary operator are illegal according to the
ANSI C standard.

Operands of [one from
set of binary
operators] have
incompatible types.

Compile Error The types of the operands to the binary
operator are not compatible according to
the ANSI C standard.

(continues)

Errors and Warnings Appendix A

LabWindows/CVI Programmer Reference A-34 © National Instruments Corporation

Table A-1. Error Messages (Continued)

Error Message Type Error Comment

Operand of unary
OPERATOR has illegal
type TYPE.

Compile Error The type of the operand to the unary
operator is not valid.

Out-of-bounds pointer
argument (before
start of array).

Fatal Runtime
Error

The pointer expression being passed to the
library function is invalid because it refers
to a location that is before the start of an
array. The expression is probably the result
of previous illegal pointer arithmetic.

Out-of-bounds pointer
argument (past end of
array).

Fatal Runtime
Error

The pointer expression being passed to the
library function is invalid because it refers
to a location that is past the end of an array.
The expression is probably the result of
previous illegal pointer arithmetic.

Out-of-bounds pointer
arithmetic: NUMBER
bytes (NUMBER
elements) before
start of array.

Non-Fatal
Runtime Error

The pointer arithmetic expression is invalid
because the resulting value refers to a
location that is before the start of an array.
The number of bytes and number of array
elements past the end are given.

Out-of-bounds pointer
arithmetic: NUMBER
bytes (NUMBER
elements) past end of
array.

Non-Fatal
Runtime Error

The pointer arithmetic expression is invalid
because the resulting value refers to a
location that is past the end of an array.
The number of bytes and number of array
elements past the end are given.

Out of memory for
user protection
information.

Fatal Runtime
Error

Could not allocate memory required to
store user protection information.

Overflow in constant
CONSTANT.

Compile
Warning

The value of a constant or constant
expression exceeds the environmental
limits of the type. Check that the value will
not exceed the maximum value for the
expression type.

(continues)

Appendix A Errors and Warnings

© National Instruments Corporation A-35 LabWindows/CVI Programmer Reference

Table A-1. Error Messages (Continued)

Error Message Type Error Comment

Overflow in constant
expression.

Compile
Warning

The value of a constant or constant
expression exceeds the environmental
limits of the type. Check that the value will
not exceed the maximum value for the
expression type.

Overflow in floating
constant CONSTANT.

Compile
Warning

The value of a constant or constant
expression exceeds the environmental
limits of the type. Check that the value will
not exceed the maximum value for the
expression type.

Overflow in
hexadecimal escape
sequence.

Compile
Warning

The value of a constant or constant
expression exceeds the environmental
limits of the type. Check that the value will
not exceed the maximum value for the
expression type.

Overflow in octal
escape sequence.

Compile
Warning

The value of a constant or constant
expression exceeds the environmental
limits of the type. Check that the value will
not exceed the maximum value for the
expression type.

Overflow in value for
enumeration constant
CONSTANT.

Compile Error The value of a constant or constant
expression exceeds the environmental
limits of the type. Check that the value will
not exceed the maximum value for the
expression type.

Overflow occurred
during the conversion
of the int. The
absolute value is too
big for the size.

Non-Fatal
Runtime Error

The number was too large to be stored in
the integer of the specified size.

Overflow occurred
during the conversion
of the float. The
number is too big for
type float.

Non-Fatal
Runtime Error

The number was too large to be stored in a
4 byte real.

(continues)

Errors and Warnings Appendix A

LabWindows/CVI Programmer Reference A-36 © National Instruments Corporation

Table A-1. Error Messages (Continued)

Error Message Type Error Comment

Overflow occurred
during the conversion
of the int. The
signed value is too
big for the size.

Non-Fatal
Runtime Error

The number was too large to be stored in
the integer of the specified size.

Pack pragma valid
values are 1, 2, 4,
8, and 16.

Compile Error The pack pragma alignment value
parameter is limited to 1, 2, 4, 8, or 16.

Parameter type
incompatible with
format specifier.

Non-Fatal
Runtime Error

The parameter type is not compatible with
the type expected by the format string. An
argument is either missing or of the wrong
type.

Parameter type
mismatch: expecting
TYPE but found TYPE.

Non-Fatal
Runtime Error

The parameter type does not match the type
expected by the format string. The
arguments may not be in the right order, or
an argument may have been omitted.

Pointer arithmetic
involving invalid
pointer.

Non-Fatal
Runtime Error

The pointer arithmetic expression is invalid
because one of the subexpressions contains
an invalid pointer.

Pointer arithmetic
involving null
pointer.

Non-Fatal
Runtime Error

The pointer arithmetic expression is invalid
because one of the subexpressions contains
a the value NULL.

Pointer arithmetic
involving pointer to
freed memory.

Non-Fatal
Runtime Error

The pointer arithmetic expression is invalid
because one of the subexpressions contains
a pointer to dynamic memory that was
deallocated with the function free . Once
memory is freed, all pointers into that block
of memory become invalid.

Pointer arithmetic
involving pointer to
function.

Non-Fatal
Runtime Error

The pointer arithmetic expression is invalid
because one of the subexpressions is a
function pointer.

Pointer arithmetic
involving
uninitialized
pointer.

Non-Fatal
Runtime Error

The pointer arithmetic expression is invalid
because one of the subexpressions contains
an uninitialized pointer. It is probably an
uninitialized local variable.

(continues)

Appendix A Errors and Warnings

© National Instruments Corporation A-37 LabWindows/CVI Programmer Reference

Table A-1. Error Messages (Continued)

Error Message Type Error Comment

Pointer comparison
involving address of
nonarray object.

Non-Fatal
Runtime Error

One of the pointer expressions in the
comparison is invalid because it does not
point into an array. Both expressions in
pointer comparisons must point into the
same object.

Pointer is invalid. Non-Fatal
Runtime Error

A pointer argument to the function contains
an invalid address.

Pointer points to
freed memory.

Non-Fatal
Runtime Error

A pointer argument to the function points to
memory that has been freed.

Pointer subtraction
involving address of
nonarray object.

Non-Fatal
Runtime Error

One of the pointer expressions in the
subtraction is invalid because it does not
point into an array. Both expressions in
pointer subtractions must point into the
same object.

Pointer to a local is
an illegal return
value.

Compile Error The value being returned from the function
is a pointer to a parameter or local variable.
Because the lifetime of a parameter or local
ends upon function return, any pointer to
such an object is invalid and therefore in
error.

Pointer to a
parameter is an
illegal return value.

Compile Error The value being returned from the function
is a pointer to a parameter or local variable.
Because the lifetime of a parameter or local
ends upon function return, any pointer to
such an object is invalid and therefore in
error.

Pointer to free
memory passed to
library function.

Fatal Runtime
Error

The pointer expression being passed to the
library function is invalid because it refers
to a location in dynamic memory that was
deallocated with the function free . Once
memory is freed, all pointers into that block
of memory become invalid.

(continues)

Errors and Warnings Appendix A

LabWindows/CVI Programmer Reference A-38 © National Instruments Corporation

Table A-1. Error Messages (Continued)

Error Message Type Error Comment

pragma pack(pop...)
does not set
alignment. Use
separate pack pragma.

Compile
Warning

A pragma pop was used with an alignment
value. Use separate pack pragmas for
popping and setting the alignment value.

Project not linked. Link Warning This error occurs when one or more link
errors are reported in the Interactive
Execution window and the project is not in
a linked state, and provides a possible
explanation for the link errors. The
Interactive Execution window cannot be
linked to the project unless the project is in
a linked state. If you are referencing
project symbols from the Interactive
Execution window, use the Build Project
command from the Build menu.

Qualified function
type ignored.

Compile
Warning

Any qualification of a function declaration
is extraneous but harmless.

Read error. Link Error An error has occurred while attempting to
read a file. Check that the file has access
permission and that it is in the correct
format.

Redeclaration of ‘%s’
with different
calling convention,
previously declared
at %w.

Compile Error A function has been redeclared with a
different calling convention.

(continues)

Appendix A Errors and Warnings

© National Instruments Corporation A-39 LabWindows/CVI Programmer Reference

Table A-1. Error Messages (Continued)

Error Message Type Error Comment

Redeclaration of
macro parameter NAME.

Compile Error The parameter name has already been used
once by the macro. Choose another
parameter name.

Redeclaration of
NAME.

Compile Error The declared name conflicts with a
previous declaration in the same scope and
name space. The name has already been
used in this scope. Choose another for this
declaration.

Redeclaration of NAME
previously declared
at POSITION.

Compile Error The declared name conflicts with a
previous declaration in the same scope and
name space. The name has already been
used in this scope; choose another for this
declaration.

Redefinition of label
NAME previously
defined at POSITION.

Compile Error The statement label has already been used
in this function. A statement label must be
unique within the function in which it used.

Redefinition of macro
NAME.

Compile Error The macro has already been defined with a
replacement list different from the current
definition. The same macro definition for a
name may appear in the same file more
than once as long both definitions agree in
name and number of parameters and their
replacement lists are identical.

Redefinition of NAME
previously defined at
POSITION.

Compile Error The object or function has already been
defined in the current scope. Eliminate one
of the two definitions.

Reference parameter
expected.

Non-Fatal
Runtime Error

The function expected a pointer but was
passed a scalar.

Register declaration
ignored for TYPE
NAME.

Compile
Warning

The register storage class conflicts with
the semantics of the type declared for the
object. If the object has been declared to be
of an array or struct or union type or
is qualified to be volatile then remove
the register keyword from the
declaration.

(continues)

Errors and Warnings Appendix A

LabWindows/CVI Programmer Reference A-40 © National Instruments Corporation

Table A-1. Error Messages (Continued)

Error Message Type Error Comment

Register declaration
ignored for TYPE
parameter.

Compile
Warning

The register storage class conflicts with
the semantics of the type declared for the
parameter prototype. If the object has been
declared to be of struct or union type
or is qualified to be volatile then
remove the register keyword from the
prototype parameter declaration.

Repeat value not
valid with s/l format
specifiers.

Non-Fatal
Runtime Error

A repeat value cannot be used with the s
and l format specifiers.

Result of unsigned
comparison is
constant.

Compile
Warning

The result of <UNSIGNED INTEGER
EXPRESSION> >= 0 will always
evaluate to 1.

Segment must be of
class CODE, DATA,
BSS, or STACK:
segment name NAME.

Load Error The external object module contains an
unknown class of segment. Object modules
should not contain any specially named
segments.

Segment must be
USE32: segment name
NAME.

Link Error The external object module being loaded
contains unsupported 16 bit segments.
LabWindows/CVI only supports 32-bit
object modules. Ensure that the external
object module was compiled with a 32 bit
compiler.

'signed' type
mismatch between TYPE
and TYPE.

Compile
Warning

This warning is issued when the signs of
the lvalue and rvalue expressions in a
pointer assignment operation do not agree.
Both lvalue and rvalue are pointers to
integer types but they point to integer types
of differing signs that may be the source of
problems if the lvalue is later
dereferenced. This diagnostic is issued if
you select the Enable signed/unsigned
pointer mismatch warning compiler
option.

(continues)

Appendix A Errors and Warnings

© National Instruments Corporation A-41 LabWindows/CVI Programmer Reference

Table A-1. Error Messages (Continued)

Error Message Type Error Comment

Simple/Array conflict
with format
specifier.

Non-Fatal
Runtime Error

An array passed to the function is matched
to a format specifier for a scalar, or a scalar
passed to the function is matched to a
format specifier for an array.

Size of array of TYPE
exceeds SIZE bytes.

Compile Error The size of the array or struct/union type
exceeds the compiler limitation of
INT_MAX bytes.

Size of TYPE exceeds
SIZE bytes.

Compile Error The size of the array or struct/union type
exceeds the compiler limitation of
INT_MAX bytes.

sizeof applied to a
bit field.

Compile Error Ensure that the sizeof() operation is not
being used on a bit field.

Specified width is
too small to read the
number.

Non-Fatal
Runtime Error

The width specified for a format specifier
was not large enough to read in a complete
number. Example: a width of 2 specified
for a float, and the number is -.02 ; the
negative sign and decimal point do not
make a valid number.

Stack Overflow. Fatal Runtime
Error

The program exceeded the stack limit.
Change the size of the stack in the run
options, if you think that the code is
executing correctly. Otherwise, ensure that
the program does not contain any infinite
recursion.

‘struct NAME’
declared inside
parameter list has
scope only for this
declaration.

Compile
Warning

The structure declared in the parameter list
has scope only within the parameter list.
As a result, its type is incompatible with all
other types. You should declare the
structure type before declaring function
types that use it.

(continues)

Errors and Warnings Appendix A

LabWindows/CVI Programmer Reference A-42 © National Instruments Corporation

Table A-1. Error Messages (Continued)

Error Message Type Error Comment

Structures containing
unspecified size
array fields must
contain other fields.

Compile Error Structures that contain arrays with
unspecified size must contain at least one
other non-zero size member.
LabWindows/CVI supports these types of
structures as an extension to the ANSI C
standard.

Subtraction involving
invalid pointer.

Non-Fatal
Runtime Error

One of the pointer expressions in the
subtraction is invalid. It is probably the
result of a previous invalid pointer
operation.

Subtraction involving
null pointer.

Non-Fatal
Runtime Error

One of the pointer expressions in the
subtraction has the value NULL. Both
expressions in pointer subtractions must
point into the same array object.

Subtraction involving
uninitialized
pointer.

Non-Fatal
Runtime Error

One of the pointer expressions in the
subtraction is invalid because it was not
initialized.

Subtraction of
pointers to different
objects.

Non-Fatal
Runtime Error

The pointer expressions in the subtraction
point to two distinct objects. Both
expressions in pointer subtractions must
point into the same array object.

Subtraction of
pointers to freed
memory.

Non-Fatal
Runtime Error

One of the pointer expressions in the
subtraction is invalid because it refers to a
location in dynamic memory that was
deallocated with the function free . Once
memory is freed, all pointers into that block
of memory become invalid.

Switch statement with
no cases.

Compile
Warning

The switch statement contains no case or
default label.

(continues)

Appendix A Errors and Warnings

© National Instruments Corporation A-43 LabWindows/CVI Programmer Reference

Table A-1. Error Messages (Continued)

Error Message Type Error Comment

Symbol NAME defined
in modules FILE and
FILE . In Borland
mode, multiple
modules must not
contain uninitialized
definitions of the
same global variable.
Borland creates a
separate variable for
each definition.
LabWindows/CVI and
other linkers resolve
all definitions to
the same variable.
If you want separate
variables, use
different names or
the "static" keyword.
If you want one
variable, change all
definitions except
one to "extern"
declarations.

Link Error In Borland mode, multiple modules must
not contain uninitialized definitions of the
same global variable. Borland creates a
separate variable for each definition.
LabWindows/CVI and other linkers resolve
all definitions to the same variable. If you
want separate variables, use different names
or the "static" keyword. If you want one
variable, change all definitions except one
to "extern" declarations.

Symbol NAME exported
from header FILE not
found in DLL.

DLL Link Error
or Import
Library Creation
Error.

When creating a DLL using the Include File
method for specifying exported symbols,
one of the symbols declared in the include
file was not found in the DLL project. Or,
when creating import libraries from an
include file and a DLL, one of the symbols
declared in the include file was not found in
the DLL.

Syntax error; found
TOKEN1 expecting
TOKEN2.

Compile Error A syntax error occurred because TOKEN1
was found instead of TOKEN2.

The __cdecl calling
convention is not
supported with
functions returning
floats, doubles, or
structures in WATCOM
Compatibility Mode.

Compile Error A function with an explicit __cdecl
qualifier returns a double , float or
structure, and the selected compatible
compiler is WATCOM. Either remove the
qualifier or change the function.

(continues)

Errors and Warnings Appendix A

LabWindows/CVI Programmer Reference A-44 © National Instruments Corporation

Table A-1. Error Messages (Continued)

Error Message Type Error Comment

The callback
function, NAME,
differs only by a
leading underscore
from another function
or variable. Change
one of the names for
proper linking.

Non-Fatal
Runtime Error

When trying to match a callback name
specified in a .uir file to the callback
function, the compiler found two symbols
that are the same except for a leading
underscore. Resolve this ambiguity by
changing the one of the names.

Thread data is not
supported.

Compile Error You cannot implement thread-local storage
in LabWindows/CVI.

Too many arguments to
FUNCTION.

Compile Error The declaration for function FUNCTION
contains fewer parameters than the number
of arguments passed in this function call.

Too many arguments to
variable argument
function.

Non-Fatal
Runtime Error

More arguments were passed to the variable
argument function than were expected. The
extra arguments will not affect the function
call in any way.

Too many function
parameters.

Compile Error The number of parameter declarations
exceeds compiler limitations. Declare the
function with fewer parameters.

Too many
initializers.

Compile Error The size of the initializer exceeds the size
of the object. Ensure that the initializer
matches the number/size of the object type.

Too many macro
parameters.

Compile Error The number of parameter declarations
exceeds compiler limitations. Declare the
macro with fewer parameters.

Too many parameters. Non-Fatal
Runtime Error

The number of parameters passed to a
function exceed the number of parameters
expected by the format string.

Type error in
argument %d to %s,
calling convention
mismatch.

Compile Error The function or function pointer being
passed to a function does not have the
correct calling convention.

Type error in
argument NUMBER to
NAME; TYPE is
illegal.

Compile Error The argument being passed is an illegal
array type or an incomplete type of which
the size is not known. Ensure that the
argument is of a complete type.

(continues)

Appendix A Errors and Warnings

© National Instruments Corporation A-45 LabWindows/CVI Programmer Reference

Table A-1. Error Messages (Continued)

Error Message Type Error Comment

Type error in
argument NUMBER to
NAME; found TYPE
expected TYPE.

Compile Error An argument that is not type compatible
with the prototype declaration for the
parameter in that position has been passed.
Ensure that the actual argument is type
compatible with the parameter declaration.

Type error: pointer
expected .

Compile Error The expression being dereferenced with the
'* ', '-> ' or '[] ' operator does not have
pointer type.

Unclosed comment. Compile Error A comment is missing the closing */
delimiter.

Undeclared identifier
NAME.

Compile Error NAME has not been previously declared. All
names must be declared before use. Check
that NAME declaration has not been
conditionally excluded from compilation.

Undefined label NAME. Compile Error The label NAME is used as the target of at
goto statement in the function but never
appears as a statement label. Ensure the
label appears in the same function as the
goto statements of which it is a target.
Non-local function goto are illegal.

Undefined size for
TYPE NAME.

Compile Error An object has been defined with an
incomplete type. Because the size of an
incomplete type is unknown, storage cannot
be allocated for the object.

Undefined size for
field TYPE.

Compile Error A member (field) declaration has no size
for the declared type. Member was
probably declared with an empty struct
or union type declaration.

Undefined size for
field TYPE NAME.

Compile Error A member (field) declaration has no size
for the declared type. Member was
probably declared with an empty struct
or union type declaration.

(continues)

Errors and Warnings Appendix A

LabWindows/CVI Programmer Reference A-46 © National Instruments Corporation

Table A-1. Error Messages (Continued)

Error Message Type Error Comment

Undefined size for
parameter TYPE NAME.

Compile Error An parameter has been declared with an
incomplete type. Because the size of an
incomplete type is unknown, storage cannot
be allocated for the object.

Undefined size for
static TYPE NAME.

Compile Error A static object has been declared with
an incomplete type or no initialization
expression from which a size for the type
may be surmised. Because the size of an
incomplete type is unknown, storage cannot
be allocated for the object.

Undefined static TYPE
NAME.

Compile
Warning or
Error

The static function was declared but
never defined. Because a static function
is only visible within the file it was
declared, it must be defined at some point
within the file in order to be used. If the
function was called anywhere in the file this
diagnostic is an error. Otherwise it is a
warning.

Undefined symbol
NAME.

Link Error A variable or function is used in the project,
but is not defined anywhere.

Unexpected #elif;
#endif expected.

Compile Error A #else preprocessor directive was
encountered immediately prior to this
#elif at the same level of conditional
inclusion. Check that the conditional
preprocessor inclusion directives at this
level are in the proper order.

Unexpected #elif; #if
not seen.

Compile Error An #elif preprocessor directive is
encountered where no previous beginning
#if , #ifdef , or ifndef was seen at this
level.

Unexpected #else;
#endif expected.

Compile Error An #else preprocessor directive was
encountered immediately following a prior
#else at the same level of conditional
inclusion. Check that the conditional
preprocessor inclusion directives at this
level are in the proper order.

(continues)

Appendix A Errors and Warnings

© National Instruments Corporation A-47 LabWindows/CVI Programmer Reference

Table A-1. Error Messages (Continued)

Error Message Type Error Comment

Unexpected #else; #if
not seen.

Compile Error An #else preprocessor directive is
encountered where no previous beginning
#if , #ifdef , or ifndef was seen at this
level.

Unexpected #endif; no
matching #if, #ifdef,
or #ifndef.

Compile Error An #endif preprocessor directive is
encountered where no previous beginning
#if, #ifdef , or ifndef was seen at
this level.

Unexpected EOF. Load Error An unexpected End Of File (EOF)
condition was encountered when loading an
external object module. Check that the
object file has not been truncated.

Unexpected EOF; TOKEN
expected.

Compile Error An End Of File (EOF) condition was
encountered while in mid-parsing of a
syntactic construct. Check that syntactic
structure are complete, for example,
matching parenthesis, matching braces).

Unexpected end of
format string.

Non-Fatal
Runtime Error

The format string passed to the function is
not complete. It is missing a source or
destination format specifier, or contains an
incomplete format specifier.

Unexpected token. Compile Error An unexpected token was encountered
while processing a #define preprocessor
directive. Check for missing) in any macro
parameter list

Unexpected trailing
tokens on directive
line ignored

Compile
Warning

Preprocessor line contains harmless trailing
tokens that are ignored.

Uninitialized
pointer.

Non-Fatal
Runtime Error

A pointer argument passed to a function is
uninitialized.

Uninitialized pointer
argument to library
function.

Fatal Runtime
Error

The pointer expression being passed to the
library function is invalid because it was
not initialized. It is either a local variable
or an object in dynamic memory that was
not initialized.

(continues)

Errors and Warnings Appendix A

LabWindows/CVI Programmer Reference A-48 © National Instruments Corporation

Table A-1. Error Messages (Continued)

Error Message Type Error Comment

Uninitialized string. Non-Fatal
Runtime Error

The pointer argument passed to the library
function has not yet been initialized, or is
NULL.

'union NAME' declared
inside parameter list
has scope only for
this declaration.

Compile
Warning

The union declared in the parameter list has
scope only within the parameter list. As a
result, its type is incompatible with all other
types. You should declare the union type
before declaring function types that use it.

Unknown enumeration
NAME.

Compile Error NAME is an undeclared enumeration type.

Unknown field NAME of
TYPE.

Compile Error A member selection or dereference has
attempted to access an undeclared member
(field) name of a struct or union type.
Ensure that the member is declared for the
struct or union type being selected or
dereferenced.

Unknown modifier. Non-Fatal
Runtime Error

One of the modifiers in a format specifier is
not valid.

Unknown or
unsupported OMF
record at position
NUMBER: OMF record
type NUMBER.

Load Error An unknown OMF record was encountered
while loading an external object module.
Ensure that the external object module was
compiled properly.

Unknown size of type
TYPE.

Compile Error Pointer arithmetic is being performed on
operand(s) that are pointers to types of
unknown size which are probably
incomplete types or pointer to function
types. Ensure that the pointer types are to
fully declared types and that the pointer
types are not pointers to functions either.

(continues)

Appendix A Errors and Warnings

© National Instruments Corporation A-49 LabWindows/CVI Programmer Reference

Table A-1. Error Messages (Continued)

Error Message Type Error Comment

Unknown specifier. Non-Fatal
Runtime Error

The specifier in the format specifier is not
valid.

Unnamed pop matching
named push.

Compile
Warning

A pack pragma used a unnamed pop that
balances a name push.

Unrecognized
character escape
sequence.

Compile
Warning

The character escape sequence does not
conform to any known character escape
sequence, octal escape sequence, or
hexadecimal escape sequence.

Unrecognized
character escape
sequence CHAR.

Compile
Warning

The character escape sequence does not
conform to any known character escape
sequence, octal escape sequence, or
hexadecimal escape sequence.

Unrecognized
declaration.

Compile Error The declaration is unrecognizable. Check
declaration syntax of the function, object,
or type that is being declared.

Unrecognized
preprocessor
directive.

Compile Error A # character begins a preprocessor
directive that is unknown. Check the
spelling of the preprocessor directive.

Unrecognized
statement.

Compile Error The statement syntax is unrecognizable.
Check statement syntax of type of
statement that was intended.

Unsigned operand of
unary -.

Compile
Warning

A nonsensical unary - operation is being
performed on an unsigned type. A negation
operation on an unsigned type is not
effective.

Unsupported segment
combination type
NUMBER: segment name
NAME.

Load Error A bad segment was encountered while
loading an external object module. Ensure
that the external object module was
compiled properly.

Use of keyword
'__import'
contradicts previous
use of keyword
'__export' at
POSITION.

Compile Error The use of a keyword in a variable
definition contradicts a previous definition,
e.g.
int __export x;
int __import x=0;

(continues)

Errors and Warnings Appendix A

LabWindows/CVI Programmer Reference A-50 © National Instruments Corporation

Table A-1. Error Messages (Continued)

Error Message Type Error Comment

Use of keyword
'__export'
contradicts previous
use of keyword
'__import' at
POSITION.

Compile Error The use of a keyword in a variable
definition contradicts a previous definition,
e.g.
int __import x;
int __export x=0;

Use of keyword
'__declspec(dllimport)'
contradicts previous use
of keyword
'__declspec(dllexport)'
at POSITION.

Compile Error The use of a keyword in a variable
definition contradicts a previous definition,
e.g.
int __declspec(dllexport) x;
int __declspec(dllimport) x=0;

Use of keyword
'__declspec(dllexport)'
contradicts previous use
of keyword
'__declspec(dllimport)'
at POSITION.

Compile Error The use of a keyword in a variable
definition contradicts a previous definition,
e.g.
int __declspec(dllimport) x;
int __declspec(dllexport) x=0;

Value parameter
expected.

Non-Fatal
Runtime Error

A pointer was passed for a format specifier
that required a value.

Variables defined as
DLL imports cannot be
defined with an
initial value.

Compile Error A variable defined as a DLL import is
being assigned an initial value, e.g.
int __import i = 0;

The variable must be initialized in a
separate assignment statement.

VXI address must be a
multiple of 2 for
word transfer.

Fatal Runtime
Error

An attempt was made to perform VXI word
transfer beginning at an odd address.

VXI address must be a
multiple of 4 for
longword transfer.

Fatal Runtime
Error

An attempt was made to perform a VXI
longword transfer beginning at an address
that is not a multiple
of 4.

w modifier not valid
with l format
specifier.

Non-Fatal
Runtime Error

The w modifier cannot be used with the l
format specifier.

(continues)

Appendix A Errors and Warnings

© National Instruments Corporation A-51 LabWindows/CVI Programmer Reference

Table A-1. Error Messages (Continued)

Error Message Type Error Comment

Warning: Import
libraries other than
the one for the
current compatibility
mode may not work for
symbols exported from
an object file. It is
recommended that you
export using header
files instead.

DLL Link
Warning

When creating a DLL using the Symbols
Marked for Export method for specifying
exported symbols, one of the modules was
an object or library file. LabWindows/CVI
does not have sufficient information to
ensure that the import libraries it generates
for all four compatible external compilers
will have the correct names of the symbols
in that module.

WatchPoint: module
name is not valid.

Watchpoint
Error

The specified module name is not present in
the project or instrument list.

z modifier only valid
if rep is present.

Non-Fatal
Runtime Error

The z modifier cannot be used if the format
specifier is not an array.

z modifier required
to match string
parameter.

Non-Fatal
Runtime Error

If a character string must be treated as an
array of another type, the z modifier must
be used. This error may also be caused if
the order of the arguments is incorrect, or if
an argument is missing.

© National Instruments Corporation B-1 LabWindows/CVI Programmer Reference

Appendix B
Error Checking in LabWindows/CVI

This appendix describes error checking codes in the LabWindows/CVI environment and how
errors are reported in LabWindows/CVI libraries and instruments.

When you develop applications in LabWindows/CVI, you typically have debugging and Break
on Library Errors enabled. With these utilities enabled, LabWindows/CVI identifies and
reports programming errors in your source code, so you may have a tendency to be relaxed in
your own error checking. However, in compiled modules and standalone executables, debugging
and Break on Library Errors are disabled. This results in smaller and faster code, but you
must perform your own error checking. This fact is important to remember because many
problems can occur in compiled modules and standalone executables even if the program works
inside the environment.

It is important to check for errors that can occur due to external factors beyond the control of
your program. Examples include running out of memory or trying to read from a file that does
not exist. malloc , fopen , and LoadPanel are examples of functions that can encounter
such errors. You must provide your own error checking for these types of functions. Other
functions return errors only if your program is incorrect. The following function would return an
error if pnl or ctrl were invalid.

SetCtrlAttribute(pnl, ctrl, ATTR_DIMMED, FALSE);

The Break on Library Errors feature of LabWindows/CVI adequately checks for these types of
errors while you are developing your program, and this function would not be affected by
external factors. Therefore, it is generally not necessary to perform explicit error checking on
this type of function.

One method of error checking is to check the status of function calls upon their completion.
Many functions available from commercial libraries are designed to report any problems
encountered while attempting to respond to user commands. The libraries available from
LabWindows/CVI are no exception. All the functions in both the LabWindows/CVI libraries
and the instrument drivers available from National Instruments, return a status code to indicate
the success or failure of execution. These codes help you determine the problem when the
program does not run as expected. In this appendix, you will see how these status codes are
reported and some techniques for checking them.

Note: Status codes are integer values. These values are either common to an entire library of
functions, or specific to a function. Libraries that have a common set of codes have a
listing at the end of the chapter or manual they appear in. You can find the error
message for each integer value there. In addition, each of these libraries contains a
function that you can call to translate the integer value to an error string. When an
error code is specific to a function, you can find its corresponding error string with the
function description in the LabWindows/CVI manual set. The error string also appears
in the online help of the library function panels in LabWindows/CVI.

Error Checking in LabWindows/CVI Appendix B

LabWindows/CVI Programmer Reference B-2 © National Instruments Corporation

Error Checking

LabWindows/CVI functions return status codes in one of two ways—either by a function return
value, or by updating a global variable. In some cases, both of these methods are used. In either
case, the programmer should monitor these values for any report of an error and take appropriate
action. A common technique for error checking is to monitor the status of functions, and if an
error is reported, pause the program and report the error to the user by way of a pop-up message.
For example, when a user interface panel is loaded into memory, a positive integer value is
returned when the panel is successfully loaded. However, if a problem occurred, then the return
value is negative. The following example shows an error message handler.

panelHandle = LoadPanel (0, "main.uir", PANEL);
if (panelHandle < 0) {

ErrorCheck ("Error Loading Main Panel", panelHandle,
 GetUILErrorString (panelHandle));

}

In a case when the status is reported by way of a global variable, such as in the RS-232 Library,
the error checking is similar. In this case the global variable has a negative value when the
function has failed.

bytesRead = ComRd (1, buffer, 10);
if (rs232err < 0) {

ErrorCheck ("Error Reading From ComPort #1", rs232err,
 GetRS232ErrorString(rs232err));

}

Notice that the above function also returned the number of bytes read from the serial port. The
programmer could compare the number of bytes read to the number requested, and see if a
discrepancy exists, then take the appropriate action. Notice also the way the error codes differ
between the RS-232 Library and the User Interface Library. This difference is why it is
important to always check the style and values of errors reported by the libraries used. A section
on status reporting by library follows this section.

Once an error is detected, the program must take some action to either correct the situation or to
prompt the user to select a course of action. The following example shows a simple error
response function.

void ErrorCheck (char *errMsg, int errVal, char *errString)
{

char outputMsg[256];
int response;
Fmt (outputMsg, "%s (Error = %d).\n%s\nContinue? ",

errMsg,
errVal,
errString);

response = ConfirmPopup ("ErrorCheck", outputMsg);
if (response == 0) {

exit (-1);
}

}

Appendix B Error Checking in LabWindows/CVI

© National Instruments Corporation B-3 LabWindows/CVI Programmer Reference

Status Reporting by LabWindows/CVI Libraries and
Instrument Drivers

In this section, you will see how errors are reported in LabWindows/CVI libraries and instrument
drivers. Notice, however, that those libraries which return their status code by global variables
can also report more status information through return values.

User Interface Library

The User Interface Library routines return a negative value if any error is detected. Some
functions, such as LoadPanel , return positive values for a successful completion. This library
uses a common set of error codes, which are listed in the LabWindows/CVI User Interface
Reference Manual and in the function panel help. You can use the function
GetUILErrorString to get the error message associated with the User Interface Library
error code.

Analysis/Advanced Analysis Libraries

Both the Analysis and Advanced Analysis libraries return status information through a return
value. If this return value is negative after the function returns, an error occurred. This library
uses a common set of error codes, which are listed in the LabWindows/CVI Standard Libraries
Reference Manual, the LabWindows/CVI Advanced Analysis Reference Manual, and the function
panel help. You can use the function GetAnalysisErrorString to get the error message
associated with the Analysis Library error code.

Data Acquisition Library

The NI-DAQ libraries have a large set of possible return codes indicating both errors and
warnings. If the return code is negative, an error occurred. If the return code is positive, a
warning is issued.

Note: The main difference between an error and a warning is that when the function detects
an error it returns immediately. However, when a warning is detected, the function
notes that fact, and continues execution. The warning simply informs the user that the
function may not have executed as expected.

Refer to the back of the NI-DAQ Function Reference Manual for PC Compatibles or the function
panel help for a listing of the error codes.

Error Checking in LabWindows/CVI Appendix B

LabWindows/CVI Programmer Reference B-4 © National Instruments Corporation

VXI Library

The VXI Library uses a variety of global variables and function return codes to report any error
that occurs. You should check each function description to determine what error checking may
be needed. Refer to the specific VXI function reference manual or the on-line help for a listing
of the error codes.

GPIB/GPIB 488.2 Library

The GPIB libraries return status information through two global variables called ibsta and
iberr .

Note: The GPIB Library returns ibsta as the return codes. However, because this value is
also available as a global variable, the programmer must decide which one to check.

The ERR bit within ibsta indicates an error condition. If this bit is not set, iberr does not
contain meaningful information. If the ERR bit is set in ibsta , the error condition is stored in
iberr . After each GPIB call, your program should check whether the ERR bit is set to
determine if an error has occurred, as shown in the following code segment.

if (ibwrt(bd[instrID], buf, cnt) & ERR)
PREFIX_err = 230;

Refer to your NI 488.2 Function Reference and user manuals for detailed information on GPIB
global variables and listings of status and error codes. LabWindows/CVI function panel help also
has listings of status and error codes.

RS-232 Library

The RS-232 library returns status information through a global variable called rs232err . If
this variable is negative after the function returns, an error occurred. Notice that many of the
functions return a value in addition to setting the global variable. Typically this value contains
information on the result of the function that can also be used to detect a problem. Each function
should be checked individually. Refer to the RS-232 section in the LabWindows/CVI Standard
Libraries Reference Manual or the function panel help for a listing of the global error codes and
information on the individual functions. You can use the function GetRS232ErrorString to
get the error message associated with a RS-232 Library error code.

Appendix B Error Checking in LabWindows/CVI

© National Instruments Corporation B-5 LabWindows/CVI Programmer Reference

TCP Library

The TCP library returns status information through a return value. If this return value is negative
after the function returns, an error occurred. This library uses a common set of error codes,
which are listed in the LabWindows/CVI Standard Libraries Reference Manual and the
LabWindows/CVI function panel help. You can use the function GetTCPErrorString to get
the error message associated with a TCP Library error code.

DDE Library

The DDE library returns status information through a return value. If this return value is
negative after the function returns, an error occurred. This library uses a common set of error
codes, which are listed in the LabWindows/CVI Standard Libraries Reference Manual and the
LabWindows/CVI function panel help. You can use the function GetDDEErrorString to get
the error message associated with a DDE Library error code.

X Property Library

The X Property library returns status information through a return value. If this return value is
negative after the function returns, an error occurred. This library uses a common set of error
codes, which are listed in the LabWindows/CVI Standard Libraries Reference Manual and the
LabWindows/CVI function panel help. You can use the function GetXPropErrorString to
get the error message associated with an X Property Library error code.

Formatting and I/O Library

This library contains the file I/O, string manipulation, and data formatting functions. All three
sections can return negative error codes through their return values. However, an important fact
must be kept in mind for the string functions. When debugging is enabled, the
LabWindows/CVI environment keeps track of the sizes of strings and array. If any attempt to
access a string or array beyond its boundary is detected, the environment halts the program and
informs the user. It is important to remember that once you are in a compiled module or
standalone executable, this feature no longer exists. The string functions can write beyond the
end of a string or array without detection, resulting in corruption of memory. Therefore, you
should use the Formatting and I/O functions on strings and arrays with caution.

In addition to the return codes, the GetFmtErrNdx and NumFmtdBytes functions return
information on how the last scanning and formatting function executed. The GetFmtIOError
function returns a code that contains specific error information on the last Formatting and I/O
Library function that peformed file I/O. The GetFmtIOErrorString function converts this
code into an error string. Refer to the LabWindows/CVI Standard Library Reference Manual for
more information.

Error Checking in LabWindows/CVI Appendix B

LabWindows/CVI Programmer Reference B-6 © National Instruments Corporation

Utility Library

Error codes for the Utility functions are reported as return values. You can check each individual
function description in the LabWindows/CVI Standard Libraries Reference Manual or in the
LabWindows/CVI function panel help to determine the error conditions associated with each
return value.

ANSI C Library

Some of the ANSI C library functions report error codes as return values. Some functions also
set the global variable errno . To learn more about these values, you can consult a publication
such as C: A Reference Manual cited in the Related Documentation section of About This
Manual. Alternatively, you can use the LabWindows/CVI function panel help to determine the
error conditions assoicated with each return value.

LabWindows/CVI Instrument Drivers

Instrument drivers from National Instruments use a standard status reporting scheme. Error
codes are reported as return values, and you can check each function individually in
LabWindows/CVI function panel help to determine the error conditions associated with each
return value.

© National Instruments Corporation C-1 LabWindows/CVI Programmer Reference

Appendix C
Customer Communication

For your convenience, this appendix contains forms to help you gather the information necessary
to help us solve technical problems you might have as well as a form you can use to comment on
the product documentation. Filling out a copy of the Technical Support Form before contacting
National Instruments helps us help you better and faster.

National Instruments provides comprehensive technical assistance around the world. In the U.S.
and Canada, applications engineers are available Monday through Friday from 8:00 a.m. to
6:00 p.m. (central time). In other countries, contact the nearest branch office. You may fax
questions to us at any time.

Electronic Services

Bulletin Board Support

National Instruments has BBS and FTP sites dedicated for 24-hour support with a collection of
files and documents to answer most common customer questions. From these sites, you can also
download the latest instrument drivers, updates, and example programs. For recorded
instructions on how to use the bulletin board and FTP services and for BBS automated
information, call (512) 795-6990. You can access these services at:

• United States: (512) 794-5422 or (800) 327-3077
Up to 14,400 baud, 8 data bits, 1 stop bit, no parity

• United Kingdom: 01635 551422
Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

• France: 1 48 65 15 59
Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

FaxBack Support
FaxBack is a 24-hour information retrieval system containing a library of documents on a wide
range of technical information. You can access FaxBack from a touch-tone telephone at the
following number: (512) 418-1111.

Customer Communication Appendix C

LabWindows/CVI Programmer Reference C-2 © National Instruments Corporation

FTP Support

To access our FTP site, log on to our Internet host, ftp.natinst.com , as anonymous and
use your Internet address, such as joesmith@anywhere.com , as your password. The
support files and documents are located in the /support directories.

E-Mail Support (currently U.S. only)

You can submit technical support questions to the appropriate applications engineering team
through e-mail at the Internet addresses listed below. Remember to include your name, address,
and phone number so we can contact you with solutions and suggestions.

GPIB: gpib.support@natinst.com
DAQ: daq.support@natinst.com
VXI: vxi.support@natinst.com
LabVIEW: lv.support@natinst.com
LabWindows: lw.support@natinst.com
HiQ: hiq.support@natinst.com
Lookout: lookout.support@natinst.com
VISA: visa.support@natinst.com

Fax and Telephone Support
National Instruments has branch offices all over the world. Use the list below to find the
technical support number for your country. If there is no National Instruments office in your
country, contact the source from which you purchased your software to obtain support.

Telephone Fax

Australia 03 9 879 9422 03 9 879 9179
Austria 0662 45 79 90 0 0662 45 79 90 19
Belgium 02 757 00 20 02 757 03 11
Canada (Ontario) 519 622 9310
Canada (Quebec) 514 694 8521 514 694 4399
Denmark 45 76 26 00 45 76 26 02
Finland 90 527 2321 90 502 2930
France 1 48 14 24 24 1 48 14 24 14
Germany 089 741 31 30 089 714 60 35
Hong Kong 2645 3186 2686 8505
Italy 02 413091 02 41309215
Japan 03 5472 2970 03 5472 2977
Korea 02 596 7456 02 596 7455
Mexico 95 800 010 0793 5 520 3282
Netherlands 0348 433466 0348 430673
Norway 32 84 84 00 32 84 86 00
Singapore 2265886 2265887
Spain 91 640 0085 91 640 0533
Sweden 08 730 49 70 08 730 43 70
Switzerland 056 200 51 51 056 200 51 55
Taiwan 02 377 1200 02 737 4644
U.K. 01635 523545 01635 523154

Technical Support Form
Photocopy this form and update it each time you make changes to your software or hardware, and use the completed
copy of this form as a reference for your current configuration. Completing this form accurately before contacting
National Instruments for technical support helps our applications engineers answer your questions more efficiently.

If you are using any National Instruments hardware or software products related to this problem, include the
configuration forms from their user manuals. Include additional pages if necessary.

Name ___

Company __

Address ___

__

Fax () Phone ()

Computer brand Model Processor

Operating system: Windows 3.1, Windows for Workgroups 3.11, Windows NT 3.1, Windows NT 3.5,
Windows 95, other (include version number)

Clock Speed MHz RAM MB Display adapter

Mouse yes no Other adapters installed

Hard disk capacity MB Brand

Instruments used

National Instruments hardware product model Revision

Configuration

National Instruments software product Version

Configuration

The problem is

List any error messages

The following steps will reproduce the problem

Hardware and Software Configuration Form
Record the settings and revisions of your hardware and software on the line to the right of each item. Complete a
new copy of this form each time you revise your software or hardware configuration, and use this form as a
reference for your current configuration. When you complete this form accurately before contacting National
Instruments for technical support, our applications engineers can answer your questions more efficiently.

National Instruments Products

Data Acquisition Hardware Revision __

Interrupt Level of Hardware ___

DMA Channels of Hardware __

Base I/O Address of Hardware ___

NI-DAQ, LabVIEW, or
LabWindows Version __

Other Products

Computer Make and Model ___

Microprocessor ___

Clock Frequency __

Type of Video Board Installed ___

Operating System ___

Operating System Version __

Operating System Mode __

Programming Language __

Programming Language Version ___

Other Boards in System __

Base I/O Address of Other Boards __

DMA Channels of Other Boards ___

Interrupt Level of Other Boards __

Documentation Comment Form
National Instruments encourages you to comment on the documentation supplied with our products. This
information helps us provide quality products to meet your needs.

Title: LabWindows®/CVI Programmer Reference Manual

Edition Date: July 1996

Part Number: 320685C-01

Please comment on the completeness, clarity, and organization of the manual.

__

__

__

__

__

__

__

__

If you find errors in the manual, please record the page numbers and describe the errors.

__

__

__

__

__

__

__

__

Thank you for your help.

Name ___

Title __

Company __

Address ___

__

Fax () Phone ()

Mail to: Technical Publications Fax to: Technical Publications
National Instruments Corporation National Instruments Corporation
6504 Bridge Point Parkway (512) 794-5678
Austin, TX 78730-5039

© National Instruments Corporation G-1 LabWindows/CVI Programmer Reference

Glossary

Prefix Meaning Value

m-
µ-
n-

milli-
micro-
nano-

10-3

10-6

10-9

A

API Application Programming Interface.

active window The window affected by user input at a given moment. The title of an
active window is highlighted.

Array Display A mechanism for viewing and editing numeric arrays.

auto-exclusion A mechanism that prevents pre-existing lines from executing in the
Interactive Execution Window.

B

binary control A function panel control that resembles a physical on/off switch and can
produce one of two values depending upon the position of the switch.

breakpoint An interruption in the execution of a program.

Breakpoint A function that interrupts the execution of a program.

Breakpoint
command

A specific command that interrupts the execution of a program.

C

CDECL A function calling convention in which function arguments are passed
right to left.

check box A dialog box item that allows you to toggle between two possible
options.

clipboard A temporary storage area LabWindows/CVI uses to hold text that is cut,
copied, or deleted from a work area.

Glossary

LabWindows/CVI Programmer Reference G-2 © National Instruments Corporation

control An input and output device that appears on a function panel for
specifying function parameters and displaying function results.

cursor The flashing rectangle that shows where you can enter text on the screen.

cursor location
indicator

An element of the LabWindows/CVI screen that specifies the row and
column position of the cursor in the window.

D

default command The action that takes place when <ENTER> is pressed and no command
is specifically selected. Default command buttons are indicated in
dialog boxes with a double outline.

dialog box A prompt mechanism in which you specify additional information
needed to complete a command.

DLL Dynamic Link Library. A file containing a collection of functions that
can be used by multiple applications (.exe files).

E

entry mode indicator An element of the LabWindows/CVI screen that indicates the current text
entry mode as either insert or overwrite.

excluded code Code that is ignored during compilation and execution. Excluded lines of
code are displayed in a different color than included lines of code.

F

.fp file A file containing information about the function tree and function panels
of an instrument module.

full-screen mode A screen display mode in which one window occupies the entire screen.

function panel A screen-oriented user interface to the LabWindows/CVI libraries in
which you can interactively execute library functions and generate code
for inclusion in a program.

Function Panel
Editor window

The window in which you build a function panel. It is described in the
LabWindows/CVI Instrument Library Developer's Guide.

function panel
window

The window in which you can use function panels.

Glossary

© National Instruments Corporation G-3 LabWindows/CVI Programmer Reference

function tree The hierarchical structure in which the functions in a library or an
instrument driver are grouped. The function tree simplifies access to a
library or instrument driver by presenting functions organized according
to the operation they perform, as opposed to a single linear listing of all
available functions.

Function Tree Editor The window in which you build the skeleton of a function panel file. It is
described in the LabWindows/CVI Instrument Library Developer's Guide.

G

Generated Code box A small box located at the bottom of the function panel screen that
displays the code produced by the manipulation of function panel
controls.

global control A function panel control that displays the contents of global variables in a
library function. Global controls allow you to monitor global variables in
a function that are not specifically returned as results by the function.
These are read-only controls that cannot be altered by the user, and do not
contribute a parameter to the generated code.

glue code Special code that provides the interface between 32-bit LabWindows/CVI
applications and 16-bit DLLs.

H

hex Hexadecimal.

highlight The way in which input focus is displayed on a LabWindows/CVI screen;
to move the input focus onto an item.

I

immediate action
command

A command that has no menu items associated with it and takes effect
immediately when selected. An immediate action command is suffixed
with an exclamation point (!).

input control A function panel control that accepts a value typed in from the keyboard.
An input control can have a default value associated with it. This value
appears in the control when the panel is first displayed.

input focus Displayed on the screen as a highlight on an item, signifying that the item
is active. User input affects the item in the dialog box that has the input
focus.

Glossary

LabWindows/CVI Programmer Reference G-4 © National Instruments Corporation

instrument driver A set of high-level functions for controlling an instrument. It
encapsulates many low-level operations, such as data formatting and
GPIB, RS-232, and VXI communication, into intuitive, high-level
functions. An instrument driver can pertain to one particular instrument
or to a group of related instruments. An instrument driver consists of a
program and a set of function panels. The program contains the code for
the high-level functions. Associated with the instrument program is an
include file that declares the high-level functions you can call, the global
variables you can access, and the defined constants you can use.

Instrument Library A LabWindows/CVI library that contains instrument control functions.

Interactive
Execution window

A LabWindows/CVI work area in which sections of code may be
executed without creating an entire program.

L

list box A dialog box item that displays a list of possible choices.

lvalue A C expression that refers to an object that can be examined and modified.
The name lvalue comes from the fact that only lvalues may appear on the
left side of an assignment. Examples of lvalues are variables, parameters,
array element references such as a[i] , struct element references such
as s->name or s.name , and pointer dereferences such as *ptr .
Expressions that are not lvalues are called rvalues.

M

MB Megabytes of memory.

menu An area accessible from the command bar that displays a subset of the
possible command choices.

O

output control A function panel control that displays a value determined by the function
you execute. An output control parameter must be a string, an array, or a
reference parameter of type integer, long, single-precision, or double-
precision.

ordinal number A numeric value that corresponds to a function within a DLL. It is
arbitrarily defined by the linker that creates the DLL or it may be
specified in the .def file when the DLL is created.

Glossary

© National Instruments Corporation G-5 LabWindows/CVI Programmer Reference

P

PASCAL A function calling convention in which function arguments are passed
left to right.

primary control A function panel control that specifies parameters in the function panel's
primary function.

primary function The function that performs the main task associated with a function
panel. A function panel has only one primary function, but can have
many secondary functions.

Project window A windows containing a list of files used by your application.

prompt command A command that requires additional information before it can be
executed; a prompt command appears on a pull-down menu suffixed with
three ellipses (…).

R

return value control A function panel control that displays a value returned from a function as
a return value rather than as a formal parameter.

ring control A function panel control that represents a range of values much like the
slide control, but displays only a single item in a list, rather than
displaying the whole list at once as the slide control does. Each item has a
different value associated with it. This value is placed in the function call.

rvalue Any C expression that is not an lvalue. Examples of rvalues are array
names, functions, function calls such as f() , assignment expressions
such as x = e and cast expressions such as (AnyType)e .

S

SDK Software Development Kit.

scroll bars Areas along the bottom and right sides of a window that show your
relative position in the file. Scroll bars can be used with a mouse to move
about in the window.

scrollable text box A dialog box item that displays text in a scrollable display.

select To choose the item that the next executed action will affect by moving the
input focus (highlight) to a particular item or area.

shortcut key
commands

A combination of keystrokes that provide a means of executing a
command without accessing a menu in the command bar.

Glossary

LabWindows/CVI Programmer Reference G-6 © National Instruments Corporation

slide control A function panel control that resembles a physical slide switch. A slide
control is a means for selecting one item from a list of options; it inserts a
value in a function call that depends upon the position of the cross-bar on
the switch.

slider The cross-bar on the slide control which determines the value placed in
the function call.

Source window A LabWindows/CVI work area where programs are edited and executed.

split-screen mode A screen display mode in which two windows occupy the screen at once;
each window occupies one-half of the display.

Standard Input/
Output window

A LabWindows/CVI work area in which textual output to and input from
the user take place.

standard libraries The LabWindows/CVI User Interface, Analysis, Data Formatting and I/O,
GPIB, GPIB-488.2, DDE, TCP, RS-232, Utility, and C system libraries.

String Display
window

A window for viewing and editing string variables and arrays.

T

text box A dialog box item in which text is entered from the keyboard to complete
a command.

U

User Interface Editor
window

The window in which you build pull-down menus, dialog boxes, panels,
and controls and save them to a User Interface Resource (.UIR) file. It is
described in the LabWindows/CVI User Interface Reference Manual.

V

Variable Display
window

A window that shows the values of the variables that are currently
defined.

W

Watch window A window that shows the values, selected variables, and expressions that
are currently defined.

window A working area that supports specific tasks related to developing and
executing programs.

© National Instruments Corporation I-1 LabWindows/CVI Programmer Reference

Index

Numbers/Symbols

_cdecl calling convention qualifier, 1-6
__cdecl calling convention qualifier, 1-6
CVI macro, 1-4
_CVI_DEBUG_ macro, 1-4
_CVI_DLL_ macro, 1-5
_CVI_EXE_ macro, 1-4
_CVI_LIB_ macro, 1-5
__declspec(dllexport) calling convention

qualifier, 1-6, 3-18
__declspec(dllimport) calling convention

qualifier, 1-6
__DEFALIGN_ macro, 1-5
_export calling convention qualifier, 1-7
__export calling convention qualifier, 1-7
__FLAT__ macro, 1-5
_import calling convention qualifier, 1-7
__import calling convention qualifier, 1-7
_M_IX86_ macro, 1-5
_NI_BC_ macro, 1-5
_NI_i386_ macro, 1-4
_NI_mswin_ macro, 1-4, 6-1
_NI_mswin16_ macro, 1-4, 6-1
_NI_mswin32_ macro, 1-4, 1-5, 6-1
_NI_SC_ macro, 1-5
_NI_sparc_ macro, 1-4, 6-1
_NI_unix_ macro, 1-4, 6-1
_NI_VC_ macro, 1-5
_NI_WC_ macro, 1-5
__NT__ macro, 1-5
_stcall calling convention

qualifier, 1-6, 3-17
__stcall calling convention qualifier, 1-6,

3-17 to 3-18, 3-20
_WIN32 macro, 1-5
__WIN32__ macro, 1-5
_WINDOWS macro, 1-5
16-bit source code, converting to 32-bit

source code, 1-9 to 1-10

16-bit Windows DLLs. See Microsoft
Windows 16-bit DLLs.

32-bit Borland or Symantec compiled
modules under Windows, 4-2 to 4-3

32-bit source code
converting 16-bit source code to 32-bit

source code, 1-9 to 1-10
DLL calling directly back into 32-bit

code, 4-12 to 4-14
32-bit Watcom compiled modules under

Windows 3.1, 4-1 to 4-2
32-bit Windows DLLs. See Microsoft

Windows 32-bit DLLs.

A

.a files, using with standalone
executables, 7-8

Add Files To DLL button, 7-12
Add Files To Executable button, 7-12
Advanced Analysis Library, B-3
Analysis Library, B-3
ANSI C Library

include files, for Windows 95/NT, 3-9
status reporting by, B-6

ANSI C specifications
multiplatform application portability, 6-2
non-ANSI LabWindows/CVI compiler

keywords, 1-5
using low-level I/O functions, 1-8

array indexing errors. See pointer protection
errors.

array passing in glue code, 4-10
asynchronous callbacks, compiled modules

using, 2-5
asynchronous DLL functions, 4-11 to 4-12
Auto-Load List command, Edit menu, 8-2

Index

LabWindows/CVI Programmer Reference I-2 © National Instruments Corporation

B

bit fields, Windows 32-bit DLLs, 3-5
Borland C/C++

Borland or Symantec 32-bit compiled
modules under Windows, 4-2 to 4-3

creating 16-bit Windows DLLs, 4-21
to 4-22

creating object and library files for use in
LabWindows/CVI, 3-14 to 3-15

Break on Library Errors option, 1-15
to 1-16, 7-16, B-1

buffer retention by DLL glue code, 4-11
to 4-12

Build Error window, 1-4
Build menu

Compiler Defines command, 1-4
Create Distribution Kit

command, 7-1, 7-8
External Compiler Support

command, 3-10
Target command, 3-16, 3-17, 3-21

building platform-independent applications.
See multiplatform applications, building.

bulletin board support, C-1

C

.c files. See source files.
C language extensions

calling conventions (Windows 95/NT),
1-6 to 1-7

import and export qualifiers, 1-6
to 1-7

C++-style comment markers, 1-7
duplicate typedefs, 1-7
non-ANSI C standard keywords, 1-5
program entry points (Windows), 1-8
structure packing pragma (Windows),

1-7 to 1-8
C library

using low-level I/O functions, 1-8
C++ style comment markers, 1-7

callback functions
compiled modules using asynchronous

callbacks, 2-5
direct callback by DLLs, 4-12 to 4-14
status change notification for compiled

modules, 2-4 to 2-5
callback references, resolving

(Windows 95/NT)
from modules loaded at run-time, 3-11

to 3-12
references to non-LabWindows/CVI

symbols, 3-11
run-time module references to

symbols not exported from
DLL, 3-12

from .uir files, 3-9 to 3-10
linking to callback functions not

exported from DLL, 3-10
calling conventions (Windows 95/NT), 1-6

to 1-7
for exported functions, 3-17 to 3-18
import and export qualifiers, 1-6 to 1-7

casting. See pointer casting.
cdecl calling convention, 1-6
_cdecl calling convention qualifier, 1-6
__cdecl calling convention qualifier, 1-6
Check Disk Dates Before Each Run

option, 4-4
CloseCVIRTE function, 3-13 to 3-14
code. See source files.
colors, multiplatform application

considerations, 6-3
comment markers, C++ style, 1-7
Compatibility with option, 1-2
compiled modules. See loadable compiled

modules.
compiler. See also compiler options.

C library issues
using low-level I/O functions, 1-8

compiler defines, 1-4 to 1-5
data types

allowable data types (table), 1-9
converting 16-bit code to 32-bit

code, 1-9 to 1-10
debugging levels, 1-10 to 1-11
error messages, A-1 to A-58

Index

© National Instruments Corporation I-3 LabWindows/CVI Programmer Reference

limits (table), 1-1
non-ANSI C keywords, 1-5
overview, 1-1
user protection errors

general protection errors, 1-15
library protection errors, 1-15 to 1-16
memory corruption (fatal), 1-15
memory deallocation

(non-fatal), 1-14
pointer arithmetic (non-fatal), 1-12
pointer assignment (non-fatal), 1-12
pointer casting (non-fatal), 1-14
pointer comparison (non-fatal), 1-13
pointer dereference errors

(fatal), 1-13
pointer subtraction (non-fatal), 1-14

compiler defines
predefined macros

for platform-dependent code, 1-4
for Windows 95 and NT, 1-4 to 1-5

syntax, 1-4
Compiler Defines command

Build menu, 1-4
Options menu, 3-22

compiler options
Compatibility with, 1-2
compiled object modules

Borland C 4.x, 4-3
Symantec C++ 6.0, 4-2 to 4-3
Watcom, 4-2

Default calling convention option, 1-2
Display status dialog during build, 1-4
Enable signed/unsigned pointer

mismatch warning, 1-3
Enable unreachable code warning, 1-3
Maximum number of compile errors, 1-2
Prompt for include file paths, 1-3 to 1-4
Require function

prototypes, 1-2, 2-2, 2-3
Require return values for non-void

functions, 1-2 to 1-3
Show Build Error window for

warnings, 1-4
Stop on first file with errors, 1-4
Track include file dependencies, 1-3

Compiler Options command, Options
menu, 3-4

Compiler Preferences command, Options
menu, 1-2, 2-2, 2-3

compiler/linker issues. See specific
operating system, e.g., UNIX operating
system.

configuring Run-time Engine
cvidir option, 7-6 to 7-7
cvirtx option, 7-6
translating message file, 7-5

converting 16-bit source code to 32-bit
source code, 1-9 to 1-10

Create Distribution Kit command, Build
menu, 7-1, 7-8

Create Dynamic Link Library
command, 3-20, 7-13 to 7-15

Create Object File command, Options
menu, 3-21

Create Standalone Executable File
command, 3-16, 7-13 to 7-16

Create Static Library command, 3-17, 3-21
creating

loadable compiled modules. See loadable
compiled modules.

platform-independent applications. See
multiplatform applications, building.

standalone executables. See standalone
executables, creating and distributing.

Windows DLLs. See Microsoft
Windows 16-bit DLLs; Microsoft
Windows 32-bit DLLs.

customer communication, xi, C-1 to C-2
CVI macro, 1-4
_CVI_DEBUG macro, 1-4
cvidir configuration option

(Windows 95/NT), 7-6 to 7-7
_CVI_DLL_ macro, 1-5
_CVI_EXE_ macro, 1-4
_CVI_LIB_ macro, 1-5
cvirtx configuration option

(Windows 3.1), 7-6

Index

LabWindows/CVI Programmer Reference I-4 © National Instruments Corporation

D

Data Acquisition Library, B-3
data types

allowable data types for compiler
(table), 1-9

converting 16-bit source code to 32-bit
source code, 1-9 to 1-10

DDE Library, B-5
debugging levels

Extended, 1-11
None, 1-11
Standard, 1-11

__declspec(dllexport) calling convention
qualifier, 1-6, 3-18

__declspec(dllimport) calling convention
qualifier, 1-6

__DEFALIGN_ macro, 1-5
Default calling convention option, 1-2
Display status dialog during build

option, 1-4
distributing libraries, 8-1 to 8-3

adding to user's Library menu, 8-1 to 8-2
specifying library dependencies, 8-2

to 8-3
distributing standalone executables. See

standalone executables, creating and
distributing.

DLLEXPORT macro, 1-7, 3-18
DLLIMPORT macro, 1-7
DLLs. See Microsoft Windows 16-bit DLLs;

Microsoft Windows 32-bit DLLs.
DLLSTDCALL macro, 3-18, 3-20
documentation

conventions used in manual, x
organization of manual, ix-x
related documentation, xi

doubles, returning, 3-5
duplicate typedefs, 1-7
dynamic memory protection, 1-19
dynamic memory protection errors

memory corruption (fatal), 1-15
memory deallocation (non-fatal), 1-14

E

Edit menu, Function Tree Editor, 8-2
electronic support services, C-1 to C-2
e-mail support, C-2
Enable signed/unsigned pointer mismatch

warning option, 1-3
Enable unreachable code warning

option, 1-3
enum sizes, Windows 32-bit DLLs, 3-5
error checking, B-1 to B-6

Break on Library Errors option, 1-15
to 1-16, 7-16, B-1

enabling Require Function Prototypes
option (caution), 1-2

overview, B-1
standalone executables, 7-16
status codes

checking function call status
codes, B-2

returned by LabWindows/CVI
functions, B-2

status reporting by libraries and
instrument drivers, B-3 to B-6

errors. See also user protection errors.
compiler-related error messages, A-1

to A-58
enabling runtime error checking

(caution), 1-2
Maximum number of compile errors

option, 1-2
missing prototype errors, 1-2
terminating compilation for file

errors, 1-4
events, multiplatform application

considerations, 6-3
executable file, required for standalone

executables, 7-7
executables, creating and distributing. See

standalone executables, creating and
distributing.

_export calling convention qualifier, 1-7
__export calling convention qualifier, 1-7

Index

© National Instruments Corporation I-5 LabWindows/CVI Programmer Reference

export qualifiers
calling conventions

(Windows 95/NT), 1-6 to 1-7
exporting DLL functions and variables,

3-18 to 3-19
External Compiler Support command, Build

menu, 3-10
external modules. See also loadable

compiled modules.
definition, 2-3
forcing referenced modules into

executable or DLL, 7-12
multiplatform application

considerations, 6-3
under UNIX

compiling with external compilers,
5-3 to 5-4

restrictions, 5-3
using loadable compiled module as, 2-3

F

fax and telephone support, C-2
FaxBack support, C-1
files for running standalone executables

accessing UIR, image, and panel state
files, 7-9

DLL files, 7-8
loading files using LoadExternalModule,

7-11 to 7-16
DLL files and DLL path files

(Windows 3.1), 7-14 to 7-15
DLL files (Windows 95/NT), 7-14
files in project, 7-12 to 7-13
forcing referenced modules into

executable or DLL, 7-12
library files not in project, 7-13
object files not in project, 7-13
other types of files, 7-16
source files, 7-15 to 7-16

location of files on target machine, 7-8
to 7-16

relative pathnames for accessing
files, 7-16

required files, 7-7 to 7-8

__FLAT__ macro, 1-5
floats, returning, 3-5
fonts, multiplatform application

considerations, 6-3
Formatting and I/O Library, B-5 to B-6
<FORWARD DELETE> key, multiplatform

application considerations, 6-3
FTP support, C-2
full prototype, 1-2
function definition

new style, 1-2
old style, 1-2

function prototypes
occurrence of missing prototype

errors, 1-2
requiring, 1-2

functions exported by ordinal value
only, 4-18

G

general protection errors, 1-15
Generate DLL Glue Object command,

Options menu, 7-14
Generate DLL Glue Source command,

Options menu, 4-8, 4-9
Generate DLL Import Library command,

Options menu, 3-4
Generate DLL Import Source command,

Options menu, 3-16
Generate Windows Help command, Options

menu, 3-20
GetCVIWindowHandle function, 4-20
glue code. See Microsoft Windows 16-bit

DLLs.
GPIB/GPIB 488.2 Library, B-4
graphical user interface (GUI),

multiplatform application
considerations, 6-3

Index

LabWindows/CVI Programmer Reference I-6 © National Instruments Corporation

H

hardware interrupts under Windows 95/NT,
3-24 to 3-25

hot keys. See shortcut keys.

I

image files
accessing from standalone

executables, 7-9
multiplatform application

considerations, 6-3
using with standalone executables, 7-8

_import calling convention qualifier, 1-7
__import calling convention qualifier, 1-7
import libraries (Windows 95/NT)

automatic loading of SDK import
libraries, 3-23

compatibility with external
compilers, 3-4

customizing DLL import libraries, 3-16
to 3-17

generating DLL import library, 3-3
link errors when using DLL import

libraries, 3-2
import qualifiers. See also export qualifiers.

calling conventions (Windows 95/NT),
1-6 to 1-7

marking imported symbols in include
file, 3-19

include file dependencies
prompting for paths, 1-3 to 1-4
tracking, 1-3

include files
ANSI C library and LabWindows/CVI

libraries, 3-9
generating glue code, 4-9
Windows 32-bit DLLs

exporting DLL functions and
variables, 3-18

marking imported symbols in include
file, 3-19

Windows SDK functions, 3-22

include paths, setting up for
LabWindows/CVI, ANSI C, and SDK
libraries, 3-23 to 3-24

Include Paths command, Options
menu, 1-20

InitCVIRTE, calling
UNIX executables, 5-2 to 5-3
Windows 95/NT executables, 3-13 to 3-14

Instrument Directories command, Options
menu, 8-2

instrument drivers
definition, 2-2
status reporting, B-6
using loadable compiled modules as

program files, 2-2
Instrument menu, 2-2, 7-12
interrupts under Windows 95/NT, 3-24 to 3-25

K

keywords. See also Numbers/Symbols.
non-ANSI LabWindows/CVI compiler

keywords, 1-5
void keyword, 1-2

L

LabWindows/CVI compiler. See compiler.
LabWindows/CVI Run-time Engine. See

Run-time Engine.
.lib files. See library files.
libraries

C library issues, 1-8
creating static libraries, 3-21
distributing, 8-1 to 8-3

adding to user's Library menu, 8-1
to 8-2

specifying library dependencies, 8-2
to 8-3

loading library files for standalone
executables, 7-13

portability issues for multiplatform
applications, 6-1 to 6-2

Index

© National Instruments Corporation I-7 LabWindows/CVI Programmer Reference

using loadable compiled modules as user
libraries, 2-2 to 2-3

Windows 95/NT compiler issues
calling InitCVIRTE and

CloseCVIRTE, 3-13 to 3-14
include files for ANSI C library and

LabWindows/CVI libraries, 3-9
multithreading and

LabWindows/CVI libraries, 3-7
to 3-8

resolving callback references from
.uir files, 3-9 to 3-10

resolving references from modules
loaded at run-time, 3-11 to 3-12

run state change callbacks
unavailable, 3-12

standard input/output windows, 3-9
using LabWindows/CVI libraries in

external compilers, 3-8 to 3-13
library files

compatibility with external compilers
(Windows 95/NT), 3-4

creating in external compilers for use in
LabWindows/CVI, 3-14 to 3-15

loading with LoadExternalModule, 7-13
using with standalone executables, 7-8

library function user protection errors, 1-19
disabling, 1-17 to 1-18

Library menu
appearance of user libraries on, 2-3
installing user libraries, 2-2, 8-1 to 8-2
linking modules with external

modules, 7-12
Library Options command, Project Options

menu, 2-2, 8-1
library protection errors, 1-15 to 1-16

disabling
at run-time, 1-16
for functions, 1-17 to 1-18

errors involving library protection, 1-15
#line preprocessor directive, 1-5
loadable compiled modules

16-bit Windows DLLs
creating

with Borland C++, 4-21 to 4-22
with Microsoft Visual C++ 1.5, 4-21

glue code
DLLs unable to use glue code

generated at load time, 4-8
to 4-19

DLLs using glue code generated
at load time, 4-8

requirements, 4-7 to 4-8
helpful LabWindows/CVI

options, 4-4
overview, 4-4
rules and restrictions, 4-5 to 4-7
search precedence, 4-22 to 4-23

32-bit Borland or Symantec compiled
modules under Windows, 4-2 to 4-3

32-bit Watcom compiled modules under
Windows 3.1, 4-1 to 4-2

advantages and disadvantages, 2-1 to 2-2
external modules, 2-3
instrument driver program files, 2-2
modules compiled by

LabWindows/CVI, 4-1
multiplatform application

considerations, 6-3
overview, 2-1
project list, 2-3
requirements, 2-1
special considerations, 2-4 to 2-5
status changes

examples of program state changes,
2-4 to 2-5

modules using asynchronous
callbacks, 2-5

notifying compiled modules of
changes, 2-4 to 2-5

user libraries, 2-2 to 2-3
Windows messages passed from DLLs,

4-19 to 4-20
GetCVIWindowHandle

function, 4-20
RegisterWinMsgCallback function,

4-19 to 4-20
UnRegisterWinMsgCallback

function, 4-20
LoadExternal Module for loading files, 7-11

to 7-16
DLL files and DLL path files

(Windows 3.1), 7-14 to 7-15

Index

LabWindows/CVI Programmer Reference I-8 © National Instruments Corporation

DLL files (Windows 95/NT), 3-2, 7-14
files listed in project, 7-12 to 7-13
forcing modules into executable or

DLL, 7-12
library files not in project, 7-13
object files not in project, 7-13
other types of files, 7-16
source files, 7-15 to 7-16

locking process segments into memory
using plock(), 5-4

long doubles, Windows 32-bit DLLs, 3-6
low-level I/O functions, using, 1-8

M

macros, predefined
Windows 95/NT, 1-4 to 1-5
writing platform-independent

code, 1-4, 6-1
manual. See documentation.
math coprocessor software emulation for

Windows 3.1, 7-2
Maximum number of compile errors

option, 1-2
memory protection errors

memory corruption (fatal), 1-15
memory deallocation (non-fatal), 1-14

message file for Run-time Engine,
translating, 7-5

messages passed from DLLs. See Microsoft
Windows messages passed from DLLs.

Microsoft Visual Basic, automatic inclusion
of Type Library resource for, 3-20 to 3-21

Microsoft Visual C++
creating 16-bit Windows DLLs, 4-21
creating object and library files for use in

LabWindows/CVI, 3-14
Microsoft Windows 3.1

compiler/linker issues
16-bit Windows DLLs. See

Microsoft Windows 16-bit DLLs.
32-bit Borland or Symantec

compiled modules, 4-2 to 4-3
32-bit Watcom compiled

modules, 4-1 to 4-2

modules compiled by
LabWindows/CVI, 4-1

cvirtx option for configuring Run-time
Engine, 7-6

distributing standalone executables
math coprocessor software

emulation, 7-2
minimum system requirements, 7-2

program entry points, 1-8
structure packing pragmas, 1-7 to 1-8

Microsoft Windows 16-bit DLLs
creating

with Borland C++, 4-21 to 4-22
with Microsoft Visual C++ 1.5, 4-21

fixing linker error (note), 4-7
for standalone executables

definition, 7-8
loading with LoadExternalModule,

7-14 to 7-15
rules for using, 7-10 to 7-11

glue code
DLLs unable to use glue code

generated at load time, 4-8 to 4-19
arrays bigger than 64 K, 4-10
buffer retained after function

returns (asynchronous
function), 4-11 to 4-12

direct callbacks into 32-bit code,
4-12 to 4-14

functions exported by ordinal
value only, 4-18

loading, 4-8 to 4-9
pointer that points to other

pointers, 4-16 to 4-18
returning pointers, 4-14 to 4-16
rules for include file, 4-9
support module required outside

of DLL, 4-9
DLLs using glue code generated at

load time, 4-8
requirements, 4-4
unusable in specific situations, 4-7

to 4-8
helpful LabWindows/CVI options, 4-4
not supported in Windows 95/NT, 3-2
overview, 4-4
rules and restrictions, 4-5 to 4-7
search precedence, 4-22 to 4-23

Index

© National Instruments Corporation I-9 LabWindows/CVI Programmer Reference

Microsoft Windows 32-bit DLLs
compatibility with external compilers,

3-4 to 3-6
bit fields, 3-5
enum sizes, 3-5
long doubles, 3-5
returning floats and doubles, 3-5
returning structures, 3-5
structure packing, 3-4 to 3-5

creating in LabWindows/CVI, 3-16
to 3-21

automatic inclusion of Type Library
resource for Visual Basic, 3-20
to 3-21

calling conventions for exported
functions, 3-17 to 3-18

customizing import library, 3-16
to 3-17

exporting DLL functions and
variables, 3-18 to 3-19

export qualifier method, 3-18
to 3-19

include file method, 3-18
marking imported symbols in include

file distributed with DLL, 3-19
to 3-20

preparing source code, 3-17 to 3-20
recommendations, 3-20

DLL import library compatibility with
external compilers, 3-4

for standalone executables
distributing, 7-8
loading with LoadExternalModule, 7-14
location, 7-9
rules for using, 7-10

loading, 3-1 to 3-3
16-bit DLLs not supported, 3-2
default unloading/reloading

policy, 3-3
DLL path (.pth) files not

supported, 3-2
DLLs for instrument drivers and user

libraries, 3-2
generating import library, 3-3
link errors when using DLL import

libraries, 3-2

using LoadExternalModule
function, 3-2

Microsoft Windows 95/NT
32-bit DLLS. See Microsoft Windows

32-bit DLLs.
calling convention qualifiers in function

declarations, 1-6 to 1-7
calling Windows SDK functions in

LabWindows/CVI, 3-22 to 3-23
automatic loading of SDK import

libraries, 3-23
creating multiple threads using

Windows SDK functions, 3-23
interface capabilities of Windows

SDK functions, 3-22
Windows SDK include files, 3-22

compatibility with external compilers,
3-3 to 3-6

choosing a compiler, 3-4
Compatibility with option, 1-2
Default calling convention

option, 1-2
DLLs, 3-4 to 3-6
external compiler versions

supported, 3-6
LabWindows/CVI differences, 3-6
object files, library files, and DLL

import libraries, 3-4
required preprocessor

definitions, 3-6
creating executables in

LabWindows/CVI, 3-16
creating object and library files in

external compiler, 3-14 to 3-15
Borland C/C++ command line

compiler, 3-14 to 3-15
Microsoft Visual C/C++, 3-14
Symantec C/C++, 3-15
Watcom C/C++, 3-15

creating object files in
LabWindows/CVI, 3-21

creating static libraries in
LabWindows/CVI, 3-21

cvidir option for configuring Run-time
Engine, 7-6 to 7-7

Index

LabWindows/CVI Programmer Reference I-10 © National Instruments Corporation

distributing standalone executables
coprocessor not required, 7-2
location of files, 7-9
minimum system requirements, 7-1

hardware interrupts, 3-24 to 3-25
LabWindows/CVI libraries in external

compilers, 3-8 to 3-14
calling InitCVIRTE and

CloseCVIRTE, 3-13 to 3-14
include files, 3-9
resolving callback references from

.uir files, 3-9 to 3-10
linking to callback functions not

exported from DLL, 3-10
resolving references from modules

loaded at run-time, 3-11 to 3-12
references to non-

LabWindows/CVI
symbols, 3-11

references to symbols not
exported from DLL, 3-12

run state change callbacks
unavailable, 3-12

standard input/output window, 3-9
multithreading and LabWindows/CVI

libraries, 3-7
program entry points, 1-8
setting up include paths for

LabWindows/CVI, ANSI C, and SDK
libraries, 3-23 to 3-24

structure packing pragmas, 1-7 to 1-8
Microsoft Windows messages passed from

DLLs, 4-19 to 4-20
GetCVIWindowHandle function, 4-20
RegisterWinMsgCallback function, 4-19

to 4-20
UnRegisterWinMsgCallback

 function, 4-20
Microsoft Windows SDK functions, 3-22

to 3-23
automatic loading of SDK import

libraries, 3-23
calling in LabWindows/CVI, 3-22

to 3-23
creating multiple threads, 3-23
include files, 3-22

setting up include paths for SDK
libraries, 3-23 to 3-24

user interface capabilities, 3-22
minimum system requirements for

standalone executables, 7-1 to 7-2
missing return value (non-fatal) error, 1-15
_M_IX86_ macro, 1-5
modini program (caution), 8-2, 8-3
modreg program (caution), 8-2, 8-3
multiplatform applications, building

externally compiled module issues, 6-3
library portability issues, 6-1 to 6-2
predefined macros, 1-4 to 1-5, 6-1
programming guidelines, 6-1 to 6-3
user interface guidelines, 6-3

multithreading
creating multiple threads with Windows

SDK functions, 3-23
using LabWindows/CVI libraries, 3-7

to 3-8

N

_NI_BC_ macro, 1-5
_NI_i386_ macro, 1-4
_NI_mswin_ macro, 1-4, 6-1
_NI_mswin16_ macro, 1-4, 6-1
_NI_mswin32_ macro, 1-4, 1-5, 6-1
_NI_SC_ macro, 1-5
_NI_sparc_ macro, 1-4, 6-1
_NI_unix_ macro, 1-4, 6-1
_NI_VC_ macro, 1-5
_NI_WC_ macro, 1-5
non-void functions, requiring return values

for, 1-2
__NT__ macro, 1-5

Index

© National Instruments Corporation I-11 LabWindows/CVI Programmer Reference

O

.o files
loading with LoadExternalModule, 7-11
using with standalone executables, 7-8

object files
compatibility with external compilers

(Windows 95/NT), 3-4
creating

in external compilers for use in
LabWindows/CVI, 3-14 to 3-15

in LabWindows/CVI, 3-21
loading with LoadExternalModule, 7-11
using with standalone executables, 7-8

Options menu
Function Tree Editor

Generate Windows Help
command, 3-20

Project window
Compiler Defines command, 3-22
Compiler Options command, 3-4
Compiler Preferences

command, 1-2, 2-2, 2-3
Include Paths command, 1-20
Instrument Directories

command, 8-2
Run Options

command, 1-10, 1-15, 1-20
Source, Interactive Execution, and

Standard Input/Output windows
Create Object File command, 3-21
Generate DLL Glue Object

command, 7-14
Generate DLL Glue Source

command, 4-8, 4-9
Generate DLL Import Library

command, 3-4
Generate DLL Import Source

command, 3-16
ordinal value for exporting functions, 4-18

P

pack pragma (Windows), 1-7 to 1-8, 3-4
to 3-5

panel state files
accessing from standalone

executables, 7-9
required for standalone executables, 7-8

pascal, Pascal, and _pascal keywords, 1-5
Pascal DLL functions, 4-8, 4-9
PCX files, multiplatform application

considerations, 6-3
platform-independent applications, building.

See multiplatform applications, building.
plock function, UNIX, 5-4
pointer casting, 1-18 to 1-19
pointer mismatch warning, enabling, 1-3
pointer protection errors, 1-11 to 1-14

disabling for individual pointers, 1-16
to 1-17

dynamic memory protection errors, 1-14
to 1-15

pointer arithmetic (non-fatal), 1-12
pointer assignment (non-fatal), 1-12
pointer casting (non-fatal), 1-14
pointer comparison (non-fatal), 1-13
pointer dereference errors (fatal), 1-13
pointer subtraction (non-fatal), 1-14

pointers
DLLs passing pointers that point to other

pointers, 4-16 to 4-18
returned by DLLs, 4-14 to 4-16

pragmas
disabling or enabling library protection

errors, 1-17 to 1-18
structure packing (Windows), 1-7 to 1-8,

3-4 to 3-5
predefined macros

Windows 95/NT, 1-4 to 1-5
writing platform-independent code, 1-4

to 1-5, 6-1
printf function, using with external

compiler, 3-9
process segments, locking into memory

using plock(), 5-4
program entry points (Windows), 1-8

Index

LabWindows/CVI Programmer Reference I-12 © National Instruments Corporation

Project window, Run Options menu, 4-4
projects. See also source files.

calling compiled modules in project
list, 2-3

loading project files with
LoadExternalModule, 7-12 to 7-13

Prompt for include file paths option, 1-3
to 1-4

.pth files
loading with LoadExternalModule, 7-11
not supported for Windows 95/NT, 3-2
using with standalone executables, 7-8,

7-10 to 7-11

Q

Q387 coprocessor emulation software
(Quickware), 7-2

R

references, resolving. See callback
references, resolving.

RegisterWinMsgCallback function, 4-19
to 4-20

Reload DLLs Before Each Run
option, 3-3, 4-4

Require function prototypes
option, 1-2, 2-2, 2-3

Require return values for non-void functions
option, 1-2 to 1-3

resolving references. See callback
references, resolving.

return values
missing return value (non-fatal)

error, 1-15
requiring for non-void functions, 1-2

to 1-3
RS-232 Library, B-4
Run Options command, Options menu

Break on library errors option, 1-15
to 1-16, 7-16

Reload DLLs Before Each Run
option, 3-3

setting debugging levels, 1-10
setting maximum stack size, 1-20
Unload DLLs After Each Run

option, 3-3
Run Options menu, Project window, 4-4
run state change notification for compiled

modules
asynchronous callbacks, 2-5
examples of program state changes, 2-4

to 2-5
prototype for callback, 2-4
requirements, 2-4
unavailable

for executables under UNIX, 5-2
for external compilers under

Windows 95/NT, 3-12
Run-time Engine. See also standalone

executables, creating and distributing.
configuring, 7-5 to 7-7

cvidir option, 7-6 to 7-7
cvirtx option, 7-6
translating message file, 7-5

files required for running executable
programs, 7-7 to 7-8

location and type of files
for Windows 3.1, 7-9
for Windows 95/NT, 7-9

overview, 7-1
system requirements, 7-1 to 7-2

runtime error checking, enabling
(caution), 1-2

S

scanf function, using with external
compiler, 3-9

SDK functions. See Microsoft Windows
SDK functions.

search precedence of Windows DLLs, 4-22
to 4-23

shortcut keys, multiplatform application
considerations, 6-3

Show Build Error window for warnings
option, 1-4

Index

© National Instruments Corporation I-13 LabWindows/CVI Programmer Reference

Solaris distribution of standalone
executables

Solaris 1, 7-4 to 7-5
Solaris 2, 7-3 to 7-4

source files
converting 16-bit source code to 32-bit

source code, 1-9 to 1-10
enabling unreachable code warning, 1-3
loading with LoadExternalModule, 7-11
preparing for use in Windows 32-bit

DLL, 3-17 to 3-20
calling conventions for exported

functions, 3-17 to 3-18
exporting DLL functions and

variables, 3-18 to 3-19
export qualifier method, 3-18

to 3-19
include file method, 3-18

marking imported symbols in include
file distributed with DLL, 3-19
to 3-20

recommendations, 3-20
stack overflow error (fatal), 1-15
stack size, 1-20
standalone executables, creating and

distributing
accessing UIR, image, and panel state

files, 7-9
configuring Run-time Engine, 7-5 to 7-7

option descriptions, 7-6 to 7-7
translating message file, 7-5

distributing
under Solaris 1, 7-4 to 7-5
under Solaris 2, 7-3 to 7-4
under UNIX, 7-2 to 7-5
under Windows 3.1, 7-2
under Windows 95/NT, 7-1 to 7-2

DLL files, 7-10 to 7-11
error checking, 7-16
loading files using LoadExternal

Module, 7-11 to 7-16
DLL files and DLL path files

(Windows 3.1), 7-14 to 7-15
DLL files for Windows 95/NT, 7-14
library files, 7-13

object modules, 7-13
source files, 7-15 to 7-16

location of files on target machine, 7-8
to 7-16

DLL files
Windows 3.1, 7-10 to 7-11
Windows 95/NT, 7-10

LabWindows/CVI Run-time Engine
for Windows, 7-9

loading files using
LoadExternalModule, 7-11 to 7-16

UIR, image, and panel state files, 7-9
math coprocessor software emulation for

Windows 3.1, 7-2
relative pathnames for accessing

files, 7-16
system requirements, 7-1 to 7-2
UNIX compiler/linker issues, 5-1 to 5-3

InitCVIRTE called by main function,
5-2 to 5-3

run state change callbacks not
available, 5-2

Windows 95/NT, 3-16
necessary files, 7-8

standard input/output windows,
LabWindows/CVI, 3-9

state change notification for compiled
modules. See run state change notification
for compiled modules.

state files. See panel state files.
static libraries, creating, 3-21
status codes

checking function call status codes, B-2
definition, B-1
returned by LabWindows/CVI

functions, B-2
status dialog, displaying, 1-4
status reporting by libraries and instrument

drivers, B-3 to B-6
Advanced Analysis Library, B-3
Analysis Library, B-3
ANSI C Library, B-6
Data Acquisition Library, B-3
DDE Library, B-5
Formatting and I/O Library, B-5 to B-6

Index

LabWindows/CVI Programmer Reference I-14 © National Instruments Corporation

GPIB/GPIB 488.2 Library, B-4
LabWindows/CVI instrument

drivers, B-6
RS-232 Library, B-4
TCP Library, B-5
User Interface Library, B-3
Utility Library, B-6
VXI Library, B-4
X Property Library, B-5

_stcall calling convention
qualifier, 1-6, 3-17

__stcall calling convention qualifier, 1-6,
3-17 to 3-18, 3-20

stdcall calling convention, 1-6
Stop on first file with errors option, 1-4
structure packing pragmas (Windows), 1-7

to 1-8, 3-4 to 3-5
Sun C library. See UNIX C library.
support modules for glue code, 4-9
Symantec C/C++

creating object and library files for use in
LabWindows/CVI, 3-15

Symantec or Borland 32-bit compiled
modules under Windows, 4-2 to 4-3

system requirements for standalone
executables, 7-1 to 7-2

T

Target command, Build
menu, 3-16, 3-17, 3-21

TCP Library, B-5
technical support, C-1 to C-2
Track include file dependencies option, 1-3
Type Library resource for Visual Basic, 3-20

to 3-21
typedefs, duplicate, 1-7

U

.uir files. See user interface resource (.uir)
files.

unions, 1-19
UNIX C library

calling Sun C library from source
code, 5-1

restrictions, 5-1
using low-level I/O functions, 1-8

UNIX operating system
compiler/linker issues, 5-1 to 5-4

calling Sun C library functions, 5-1
InitCVIRTE called by main

function, 5-2 to 5-3
restrictions, 5-1

creating executables, 5-1 to 5-3
run state change callbacks not

available, 5-2
InitCVIRTE called by main function,

5-2 to 5-3
locking process segments in memory

using plock(), 5-4
run state change callbacks not

available, 5-2
using externally compiled modules,

5-3 to 5-4
compiling, 5-3 to 5-4
restrictions, 5-3

distribution of standalone executables,
7-2 to 7-5

minimum system requirements, 7-5
under Solaris 1, 7-4 to 7-5
under Solaris 2, 7-3 to 7-4

Unload command, Instruments menu, 2-2
Unload DLLs After Each Run option, 3-3
unreachable code warning, enabling, 1-3
UnRegisterWinMsgCallback function, 4-20
user interface. See graphical user interface

(GUI).
user interface events. See events.
User Interface Library, B-3
user interface resource (.uir) files

accessing from running standalone
executables, 7-9

multiplatform application
considerations, 6-3

Index

© National Instruments Corporation I-15 LabWindows/CVI Programmer Reference

required for running standalone
executables, 7-8

resolving callback references from, 3-9
to 3-10

linking to callback functions not
exported from DLL, 3-10

user libraries. See also libraries.
installing, 2-2
similarity with instrument driver, 2-2
using loadable compiled modules, 2-2

to 2-3
user protection

dynamic memory, 1-19
library functions, 1-19
pointer casting, 1-18 to 1-19
stack size, 1-20
unions, 1-19

user protection errors
disabling, 1-16 to 1-18

at run-time, 1-16
for individual pointer, 1-16 to 1-17
library errors

at run-time, 1-16
for functions, 1-17 to 1-18

error category, 1-11
general protection errors, 1-15
library protection errors, 1-15 to 1-16
memory corruption (fatal), 1-15
memory deallocation (non-fatal), 1-14
pointer arithmetic (non-fatal), 1-12
pointer assignment (non-fatal), 1-12
pointer casting (non-fatal), 1-14
pointer comparison (non-fatal), 1-13
pointer dereference errors (fatal), 1-13
pointer subtraction (non-fatal), 1-14
severity level, 1-11

Utility Library, B-6

V

va_arg (ap, type), 1-5
Visual Basic, automatic inclusion of Type

Library resource for, 3-20 to 3-21
Visual C++

creating 16-bit Windows DLLs, 4-21
creating object and library files for use in

LabWindows/CVI, 3-14
void keyword, 1-2
VXI Library, B-4

W

Watcom C/C++
32-bit compiled modules under

Windows 3.1, 4-1 to 4-2
creating object and library files for use in

LabWindows/CVI, 3-15
Watcom WEMU387.386 coprocessor

emulation software, 7-2
_WIN32 macro, 1-5
__WIN32__ macro, 1-5
Windows 95/NT

predefined macros, 1-4 to 1-5
Windows DLLS. See Microsoft Windows

16-bit DLLs; Microsoft Windows 32-bit
DLLs.

_WINDOWS macro, 1-5

X

X Property Library, status reporting by, B-5

	LabWindows/CVI Programmer Reference Manual
	Warranty
	Copyright
	Trademarks
	WARNING REGARDING MEDICAL AND CLINICAL USE OF NATIONAL INSTRUMENTS PRODUCTS

	Contents
	About This Manual
	Organization of This Manual
	Conventions Used in This Manual
	Related Documentation
	Customer Communication

	Chapter 1 LabWindows/CVI Compiler
	Overview
	LabWindows/CVI Compiler Specifics
	Compiler Limits
	Compiler Options
	Compiler Defines
	C Language Extensions
	Keywords That Are Not ANSI C Standard
	Calling Conventions (Windows 95 and NT Only)
	Import and Export Qualifiers
	C++-Style Comment Markers
	Duplicate Typedefs
	Structure Packing Pragma (Windows 3.1 and Windows 95/NT only)
	Program Entry Points (Windows 95 and NT only)
	C Library Issues
	Using the Low-Level I/O Functions
	C Data Types and 32-bit Compiler Issues
	Data Types
	Converting 16-bit Source Code to 32-bit Source Code
	Debugging Levels
	User Protection
	Array Indexing and Pointer Protection Errors
	Pointer Arithmetic (Non-Fatal)
	Pointer Assignment (Non-Fatal)
	Pointer Dereference Errors (Fatal)
	Pointer Comparison (Non-Fatal)
	Pointer Subtraction (Non-Fatal)
	Pointer Casting (Non-Fatal)
	Dynamic Memory Protection Errors
	Memory Deallocation (Non-Fatal)
	Memory Corruption (Fatal)
	General Protection Errors
	Library Protection Errors
	Disabling User Protection
	Disabling Protection Errors at Run-time
	Disabling Library Errors at Run-time
	Disabling Protection for Individual Pointer
	Disabling Library Protection Errors for Functions
	Details of User Protection
	Pointer Casting
	Dynamic memory
	Library Functions
	Unions
	Stack Size
	Include Paths
	Include Path Search Precedence

	Chapter 2 Using Loadable Compiled Modules
	About Loadable Compiled Modules
	Advantages and Disadvantages of Using Loadable Compiled Modules in LabWindows/CVI
	Using a Loadable Compiled Module as an Instrument Driver Program File
	Using a Loadable Compiled Module as a User Library
	Using a Loadable Compiled Module in the Project List
	Using a Loadable Compiled Module as an External Module
	Special Considerations When Using a Loadable Compiled Module
	Compiled Modules Using Asynchronous Callbacks

	Chapter 3 Windows 95 and NT Compiler/Linker Issues
	Loading 32-bit DLLs under Windows 95 and NT
	DLLs for Instrument Drivers and User Libraries
	Using The LoadExternalModule Function
	Link Errors when Using DLL Import Libraries
	DLL Path (.pth) Files Not Supported
	16-Bit DLLs Not Supported
	Generating an Import Library
	Default Unloading/Reloading Policy
	Compatibility with External Compilers
	Choosing Your Compatible Compiler
	Object Files, Library Files, and DLL Import Libraries
	DLLs
	Structure Packing
	Bit Fields
	Returning Floats and Doubles
	Returning Structures
	Enum Sizes
	Long Doubles
	Differences with the External Compilers
	External Compiler Versions Supported
	Required Preprocessor Definitions
	Multithreading and the LabWindows/CVI Libraries
	Multithread-Safe Libraries
	Libraries that are Not Multithread Safe
	Using LabWindows/CVI Libraries in External Compilers
	Include Files for the ANSI C Library and the LabWindows/CVI Libraries
	Standard Input/Output Window
	Resolving Callback References From .UIR Files
	Linking to Callback Functions Not Exported From a DLL
	Resolving References from Modules Loaded at Run-Time
	Resolving References to Non-LabWindows/CVI Symbols
	Resolving Run-Time Module References to Symbols Not Exported From a DLL
	Run State Change Callbacks Are Not Available in External Compilers
	Calling InitCVIRTE and CloseCVIRTE
	Creating Object and Library Files in External Compilers for Use in LabWindows/CVI
	Microsoft Visual C/C++
	Borland C/C++ command line compiler
	WATCOM C/C++
	Symantec C/C++
	Creating Executables in LabWindows/CVI
	Creating DLLs in LabWindows/CVI
	Customizing an Import Library
	Preparing Source Code for Use in a DLL
	Calling Convention for Exported Functions
	Exporting DLL Functions and Variables
	Include File Method
	Export Qualifier Method
	Marking Imported Symbols in Include File Distributed with DLL
	Recommendations
	Automatic Inclusion of Type Library Resource for Visual Basic
	Creating Static Libraries in LabWindows/CVI
	Creating Object Files in LabWindows/CVI
	Calling Windows SDK Functions in LabWindows/CVI
	Windows SDK Include Files
	Using Windows SDK Functions for User Interface Capabilities
	Using Windows SDK Functions to Create Multiple Threads
	Automatic Loading of SDK Import Libraries
	Setting Up Include Paths for LabWindows/CVI, ANSI C, and SDK Libraries
	Compiling in LabWindows/CVI for Linking in LabWindows/CVI
	Compiling in LabWindows/CVI for Linking in an External Compiler
	Compiling in an External Compiler for Linking in an External Compiler
	Compiling in an External Compiler for Linking in LabWindows/CVI
	Handling Hardware Interrupts under Windows 95 and NT

	Chapter 4 Windows 3.1 Compiler/Linker Issues
	Using Modules Compiled by LabWindows/CVI
	Using 32-Bit Watcom Compiled Modules Under Windows 3.1
	Using 32-Bit Borland or Symantec Compiled Modules Under Windows 3.1
	16-Bit Windows DLLs
	Helpful LabWindows/CVI Options for Working with DLLs
	DLL Rules and Restrictions
	DLL Glue Code
	DLLs That Can Use Glue Code Generated at Load Time
	DLLs That Cannot Use Glue Code Generated at Load Time
	Loading a DLL That Cannot Use Glue Code Generated at Load Time
	Rules for the DLL Include File Used to Generate Glue Code
	If the DLL Requires a Support Module Outside of the DLL
	If the DLL is Passed Arrays Bigger Than 64 K
	If the DLL Retains a Buffer After the Function Returns (an Asynchronous Function)
	If the DLL Calls Directly Back Into 32-Bit Code
	If the DLL returns pointers
	If a DLL Is Passed a Pointer That Points to Other Pointers
	DLL Exports Functions by Ordinal Value Only
	Generated Glue Code:
	Recognizing Windows Messages Passed from a DLL
	RegisterWinMsgCallback
	UnRegisterWinMsgCallback
	GetCVIWindowHandle
	Creating 16-bit DLLs with Microsoft Visual C++ 1.5
	Creating 16-bit DLLs with Borland C++
	DLL Search Precedence

	Chapter 5 UNIX Compiler/Linker Issues
	Calling Sun C Library Functions
	Restrictions on Calling Sun C Library Functions
	Creating Executables
	Run State Change Callbacks Are Not Available in Executables
	Main Function Must Call InitCVIRTE
	Using Externally Compiled Modules
	Restrictions on Externally Compiled Modules
	Compiling Modules With External Compilers
	Locking Process Segments into Memory Using plock()

	Chapter 6 Building Multiplatform Applications
	Multiplatform Programming Guidelines
	Library Issues
	Externally Compiled Module Issues
	Multiplatform User Interface Guidelines

	Chapter 7 Creating and Distributing Standalone Executables and DLLs
	Introduction to the Run-Time Engine
	Distributing Standalone Executables under Windows
	Minimum System Requirements for Windows 95 and NT
	No Math Coprocessor Required for Windows 95 and NT
	Minimum System Requirements for Windows 3.1
	Math Coprocessor Software Emulation for Windows 3.1
	Distributing Standalone Executables under UNIX
	Distributing Standalone Executables under Solaris 2
	Distributing Standalone Executables under Solaris 1
	Minimum System Requirements for UNIX
	Configuring the Run-Time Engine
	Translating the Message File
	Option Descriptions
	cvirtx (Windows 3.1 Only)
	cvidir (Windows Only)
	Necessary Files for Running Executable Programs
	Necessary Files for Using DLLs Created in Windows 95/NT
	Location of Files on the Target Machine for Running Executables and DLLs
	LabWindows/CVI Run-Time Engine on Windows 95/NT
	LabWindows/CVI Run-Time Engine on Windows 3.1
	Rules for Accessing UIR, Image, and Panel State Files on All Platforms
	Rules for Using DLL Files under Windows 95 and NT
	Rules for Using DLL Files in Windows 3.1
	Rules for Loading Files Using LoadExternalModule
	Forcing Modules Referenced by External Modules into Your Executable or DLL
	Using LoadExternalModule on Files in the Project
	Using LoadExternalModule on Library and Object Files Not in the Project
	Using LoadExternalModule on DLL Files under Windows 95 and NT
	Using LoadExternalModule on DLL and Path Files under Windows 3.1
	Using LoadExternalModule on Source Files (.c)
	Rules for Accessing Other Files
	Error Checking in your Standalone Executable or DLL

	Chapter 8 Distributing Libraries and Function Panels
	How to Distribute Libraries
	Adding Libraries to User’s Library Menu
	Specifying Library Dependencies

	Appendix A Errors and Warnings
	Appendix B Error Checking in LabWindows/CVI
	Error Checking
	Status Reporting by LabWindows/CVI Libraries and Instrument Drivers
	User Interface Library
	Analysis/Advanced Analysis Libraries
	Data Acquisition Library
	VXI Library
	GPIB/GPIB 488.2 Library
	RS-232 Library
	TCP Library
	DDE Library
	X Property Library
	Formatting and I/O Library
	Utility Library
	ANSI C Library
	LabWindows/CVI Instrument Drivers

	Appendix C Customer Communication
	Glossary
	Index
	Figures
	Figure 7-1. Files Needed to Run a LabWindows/CVI Executable Program on a Target Machine

	Tables
	Table 1-1. LabWindows/CVI Compiler Limits
	Table 1-2. LabWindows/CVI Allowable Data Types
	Table 1-3. Stack Size Ranges for LabWindows/CVI
	Table A-1. Error Messages

